Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Роль АТФ-зависимых хроматин-ремоделирующих факторов в процессе сборки хроматина in vivo

https://doi.org/10.18699/VJ19.476

Полный текст:

Аннотация

Сборка хроматина – фундаментальный процесс, необходимый для дупликации хромосом в процессе репликации ДНК. Кроме того, удаление гистонов и их инкорпорирование постоянно происходят в течение клеточного цикла в ходе процессов метаболизма ДНК, таких как транскрипция, восстановление повреждений или рекомбинация. Исследования in vitro показали, что сборка хроматина требует совместного действия гистоновых шаперонов и использующих энергию АТФ хроматин-ремоделирующих факторов – ACF или CHD1. Несмотря то, что АТФ-зависимые факторы сборки и ремоделирования хроматина хорошо охарактеризованы биохимически, оставалось неясным, до какой степени сборка нуклеосом является АТФ-зависимым процессом in vivo. Наши собственные и опубликованные в литературе данные о функциях АТФ-зависимых хроматин-ремоделирующих факторов показывают, что эти белки существенны для сборки нуклеосом и обмена гистонов и in vivo. CHD1 – критически важный фактор при реорганизации мужского пронуклеуса после оплодотворения, в процессе которой происходит независимая от репликации сборка хроматина, содержащего вариантный гистон Н3.3. Следовательно, молекулярные моторные белки, такие как CHD1, функционируют in vivo не только в ремоделировании существующих нуклеосом, но также и в сборке нуклеосом de novo из ДНК и гистонов. АТФ-зависимые факторы сборки и ремоделирования хроматина участвуют в процессе обмена гистонов во время транскрипции и репарации ДНК, в поддержании центромерного хроматина и образовании и ремоделировании нуклеосом позади прохождения репликационной вилки. Таким образом, хроматин-ремоделирующие факторы участвуют в процессах как зависимой, так и не зависимой от репликации сборки хроматина. Их роль особенно заметна в процессах крупномасштабной реорганизации хроматина, например при реорганизации хроматина мужского пронуклеуса или при восстановлении повреждений ДНК. Гипероновые шапероны, модифицирующие хроматин ферменты и АТФ-зависимые факторы сборки хроматина совместно образуют сеть факторов, обеспечивающих поддержание целостности хроматина.

Об авторах

Ю. А. Ильина
Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт».
Россия
Гатчина.


А. Ю. Конев
Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт».
Россия
Гатчина.


Список литературы

1. Borner K., Jain D., Vazquez-Pianzola P., Vengadasalam S., Steffen N., Fyodorov D.V., Tomancak P., Konev A., Suter B., Becker P.B. A role for tuned levels of nucleosome remodeler subunit ACF1 during Dro¬sophila oogenesis. Dev. Biol. 2016;411(2):217-230. DOI 10.1016/j. ydbio.2016.01.039.

2. Clapier C.R., Iwasa J., Cairns B.R., Peterson C.L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell. Biol. 2017;18(7):407-422. DOI 10.1038/nrm.2017.26.

3. Corona D.F., Eberharter A., Budde A., Deuring R., Ferrari S., Varga- Weisz P., Wilm M., Tamkun J., Becker P.B. Two histone fold pro-teins, CHRAC-14 and CHRAC-16, are developmentally regulated subunits of chromatin accessibility complex (CHRAC). EMBO J. 2000;19(12):3049-3059. DOI 10.1093/emboj/19.12.3049.

4. Corona D.F., Siriaco G., Armstrong J.A., Snarskaya N., McCly- mont S.A., Scott M.P., Tamkun J.W. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo. PLoS Biol. 2007;5(9):e232. DOI 10.1371/journal.pbio.0050232.

5. de Dieuleveult M., Yen K., Hmitou I., Depaux A., Boussouar F., Bou Dargham D., Jounier S., Humbertclaude H., Ribierre F., Baulard C., Farrell N.P., Park B., Keime C., Carriere L., Berlivet S., Gut M., Gut I., Werner M., Deleuze J.F., Olaso R., Aude J.C., Chanta- lat S., Pugh B.F., Gerard M. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells. Nature. 2016; 530(7588):Ш-116. DOI 10.1038/nature16505.

6. Deuring R., Fanti L., Armstrong J.A., Sarte M., Papoulas O., Prestel M., Daubresse G., Verardo M., Moseley S.L., Berloco M., Tsukiyama T., Wu C., Pimpinelli S., Tamkun J.W. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of high¬er order chromatin structure in vivo. Mol. Cell. 2000;5(2):355-365.

7. Doyen C.M., Chalkley G.E., Voets O., Bezstarosti K., Demmers J.A., Moshkin Y.M., Verrijzer C.P. A Testis-specific chaperone and the chromatin remodeler ISWI mediate repackaging of the paternal ge-nome. Cell Rep. 2015;13(7):1310-1318. DOI 10.1016/j.celrep.2015. 10.010.

8. Drane P., Ouararhni K., Depaux A., Shuaib M., Hamiche A. The death- associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 2010; 13(7):1310-1318. DOI 10.1101/gad.566910.

9. Eberharter A., Ferrari S., Langst G., Straub T., Imhof A., Varga- Weisz P., Wilm M., Becker P.B. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J. 2001; 20(14):3781-3788.

10. Elbakry A., Juhasz S., Mathes A., Lobrich M. DNA repair synthesis and histone deposition partner during homologous recombination. Mol. Cell. Oncol. 2018;5(5):e1511210. DOI 10.1080/23723556.2018. 1511210.

11. Elsasser S.J., Huang H., Lewis P.W., Chin J.W., Allis C.D., Patel D.J. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recogni¬tion. Nature. 2012;491(7425):560-565. DOI 10.1038/nature11608.

12. Emelyanov A.V., Konev A.Y., Vershilova E., Fyodorov D.V. Protein complex of Drosophila ATRX/XNP and HP1a is required for the formation of pericentric beta-heterochromatin in vivo. J. Biol. Chem. 2010;285(20):15027-15037. DOI 10.1074/jbc.M109.064790.

13. Emelyanov A.V., Vershilova E., Ignatyeva M.A., Pokrovsky D.K., Lu X., Konev A.Y., Fyodorov D.V. Identification and characteriza¬tion of ToRC, a novel ISWI-containing ATP-dependent chromatin assembly complex. Genes Dev. 2012;26(6):603-614. DOI 10.1101/ gad.180604.111.

14. Fei J., Torigoe S.E., Brown C.R., Khuong M.T., Kassavetis G.A., Boeger H., Kadonaga J.T. The prenucleosome, a stable conforma-tional isomer of the nucleosome. Genes Dev. 2015;29(24):2563- 2575. DOI 10.1101/gad.272633.115.

15. Fyodorov D.V., Blower M.D., Karpen G.H., Kadonaga J.T. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 2004;18(2):170-183.

16. Fyodorov D.V., Kadonaga J.T. Binding of Acf1 to DNA involves a WAC motif and is important for ACF-mediated chromatin assembly. Mol. Cell. Biol. 2002;22(18):6344-6353.

17. Fyodorov D.V., Kadonaga J.T. Chromatin assembly in vitro with pu-rified recombinant ACF and NAP-1. Methods Enzymol. 2003;371: 499-515.

18. Gaspar-Maia A., Alajem A., Polesso F., Sridharan R., Mason M.J., Heidersbach A., Ramalho-Santos J., McManus M.T., Plath K., Me- shorer E., Ramalho-Santos M. Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature. 2009;460(7257):863- 868. DOI 10.1038/nature08212.

19. Gkikopoulos T., Schofield P., Singh V., Pinskaya M., Mellor J., Smolle M., Workman J.L., Barton G.J., Owen-Hughes T. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nu- cleosome organization. Science. 2011;333(6050): 1758-1760. DOI 10.1126/science.1206097.

20. Goldberg A.D., Banaszynski L.A., Noh K.M., Lewis P.W., Elsaes- ser S.J., Stadler S., Dewell S., Law M., Guo X., Li X., Wen D., Chapgier A., DeKelver R.C., Miller J.C., Lee Y.L., Boydston E.A., Holmes M.C., Gregory P.D., Greally J.M., Rafii S., Yang C., Scambler P.J., Garrick D., Gibbons R.J., Higgs D.R., Cristea I.M., Urnov F.D., Zheng D., Allis C.D. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell. 2010; 140(5):678-691. DOI 10.1016/j.cell.2010.01.003.

21. Hammond C.M., Stromme C.B., Huang H., Patel D.J., Groth A. His-tone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell. Biol. 2017;18(3):141-158. DOI 10.1038/nrm.2016.159.

22. Hanai K., Furuhashi H., Yamamoto T., Akasaka K., Hirose S. RSF governs silent chromatin formation via histone H2Av replace¬ment. PLoS Genet. 2008;4(2):e1000011. DOI 10.1371/journal.pgen. 1000011.

23. Harada A., Okada S., Konno D., Odawara J., Yoshimi T., Yoshimura S., Kumamaru H., Saiwai H., Tsubota T., Kurumizaka H., Akashi K., Tachibana T., Imbalzano A.N., Ohkawa Y. Chd2 interacts with H3.3 to determine myogenic cell fate. EMBO J. 2012;31(13):2994-3007. DOI 10.1038/emboj.2012.136.

24. Hartlepp K.F., Fernandez-Tornero C., Eberharter A., Grune T., Mul¬ler C.W., Becker P.B. The histone fold subunits of Drosophila CHRAC facilitate nucleosome sliding through dynamic DNA inter-actions. Mol. Cell. Biol. 2005;25(22):9886-9896.

25. Hauer M.H., Gasser S.M. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev. 2017;31(22):2204-2221. DOI 10.1101/gad.307702.117.

26. Haushalter K.A., Kadonaga J.T. Chromatin assembly by DNA-translo- cating motors. Nat. Rev. Mol. Cell. Biol. 2003;4(8):613-620.

27. Henikoff S., Ahmad K. Assembly of variant histones into chromatin. Annu. Rev. Cell Dev. Biol. 2005;21:133-153.

28. Hennig B.P., Bendrin K., Zhou Y., Fischer T. Chd1 chromatin remodel¬ers maintain nucleosome organization and repress cryptic transcrip¬tion. EMBO Rep. 2012; 13(11 ):997-1003. DOI 10.1038/embor. 2012.146.

29. Ito T., Bulger M., Pazin M.J., Kobayashi R., Kadonaga J.T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and re-modeling factor. Cell. 1997;90(1):145-155.

30. Ito T., Levenstein M.E., Fyodorov D.V., Kutach A.K., Kobayashi R., Kadonaga J.T. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 1999;15;13(12):1529-1539.

31. Juhasz S., Elbakry A., Mathes A., Lobrich M. ATRX promotes DNA repair synthesis and sister chromatid exchange during homologous recombination. Mol. Cell. 2018;71( 1): 11-24 e7. DOI 10.1016/j. molcel.2018.05.014.

32. Kari V., Mansour W.Y., Raul S.K., Baumgart S.J., Mund A., Grade M., Sirma H., Simon R., Will H., Dobbelstein M., Dikomey E., John- sen S.A. Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness. EMBO Rep. 2016; 19(10):pii: e46783. DOI 10.15252/embr.201846783.

33. Khuong M.T., Fei J., Cruz-Becerra G., Kadonaga J.T. A simple and ver¬satile system for the ATP-dependent assembly of chromatin. J. Biol. Chem. 2017;292(47):19478-19490. DOI 10.1074/jbc.M117.815365.

34. Konev A.Y., Tiutiunnik A.A., Baranovskaya I.L. The influence of the Chdl chromatin assembly and remodeling factor mutations on Dro¬sophila polythene chromosome organization. Tsitologiia. 2016; 58(4):281-284. (in Russian)

35. Konev A.Y., Tribus M., Park S.Y., Podhraski V., Lim C.Y., Emelya-nov A.V., Vershilova E., Pirrotta V., Kadonaga J.T., Lusser A., Fyo¬dorov D.V. CHD1 motor protein is required for deposition of his¬tone variant H3.3 into chromatin in vivo. Science. 2007;317(5841): 1087-1090.

36. Krude T., Keller C. Chromatin assembly during S phase: contributions from histone deposition, DNA replication and the cell division cycle. Cell. Mol. Life Sci. 2001;58(5-6):665-672.

37. Kukimoto I., Elderkin S., Grimaldi M., Oelgeschlager T., Varga- Weisz P.D. The histone-fold protein complex CHRAC-15/17 en-hances nucleosome sliding and assembly mediated by ACF. Mol. Cell. 2004;13(2):265-277.

38. Lee J.S., Garrett A.S., Yen K., Takahashi Y.H., Hu D., Jackson J., Sei-del C., Pugh B.F., Shilatifard A. Codependency of H2B monoubi- quitination and nucleosome reassembly on Chd1. Genes Dev. 2012; 26(9):914-919. DOI 10.1101/gad.186841.112.

39. Lee Y., Park D., Iyer V.R. The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes. Nucleic Acids Res. 2017;45(12):7180-7190. DOI 10.1093/ nar/gkx321.

40. Lewis P.W., Elsaesser S.J., Noh K.M., Stadler S.C., Allis C.D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl. Acad. Sci. USA. 2010;107(32):14075-14080. DOI 10.1073/ pnas.1008850107.

41. Liu J.C., Ferreira C.G., Yusufzai T. Human CHD2 is a chromatin as-sembly ATPase regulated by its chromo- and DNA-binding domains. J. Biol. Chem. 2015;290(1):25-34. DOI 10.1074/jbc.M114.609156.

42. Loppin B., Bonnefoy E., Anselme C., Laurencon A., Karr T.L., Coub- le P. The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature. 2005;4437(7063):1386- 1390.

43. Loyola A., Huang J.Y., LeRoy G., Hu S., Wang Y.H., Donnelly R.J., Lane W.S., Lee S.C., Reinberg D. Functional analysis of the sub-units of the chromatin assembly factor RSF. Mol. Cell. Biol. 2003; 23(19):6759-6768.

44. Luijsterburg M.S., de Krijger I., Wiegant W.W., Shah R.G., Smeenk G., de Groot A.J., Pines A., Vertegaal A.C., Jacobs J.J., Shah G.M., van Attikum H. PARP1 links CHD2-mediated chromatin expansion and H3.3 deposition to DNA repair by non-homologous end-joining. Mol. Cell. 2016;61(4):547-562. DOI 10.1016/j.molcel.2016.01.019.

45. Lusser A., Urwin D.L., Kadonaga J.T. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat. Struct. Mol. Biol. 2005;12(2):160-166.

46. Morettini S., Podhraski V., Lusser A. ATP-dependent chromatin re-modeling enzymes and their various roles in cell cycle control. Front. Biosci. 2008;13:5522-5532.

47. Morettini S., Tribus M., Zeilner A., Sebald J., Campo-Fernandez B., Scheran G., Worle H., Podhraski V, Fyodorov D.V., Lusser A. The chromodomains of CHD1 are critical for enzymatic activity but less important for chromatin localization. Nucleic Acids Res. 2011; 39(8):3103-3115. DOI 10.1093/nar/gkq1298.

48. Narlikar G.J., Sundaramoorthy R., Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 2013;54(3):490-503. DOI 10.1016/j.cell.2013.07.011.

49. Ohzeki J., Shono N., Otake K., Martins N.M., Kugou K., Kimura H., Nagase T., Larionov V, Earnshaw W.C., Masumoto H. KAT7/ HBO1/MYST2 regulates CENP-A chromatin assembly by antago-nizing Suv39h1-mediated centromere inactivation. Dev. Cell. 2016; 37(5):413-427. DOI 10.1016/j.devcel.2016.05.006.

50. Okada M., Okawa K., Isobe T., Fukagawa T. CENP-H-containing com¬plex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol. Biol. Cell. 2009;20(18):3986-3995. DOI 10.1091/mbc.E09-01-0065.

51. Orsi G.A., Algazeery A., Meyer R.E., Capri M., Sapey-Triomphe L.M., Horard B., Gruffat H., Couble P., Ait-Ahmed O., Loppin B. Drosophila Yemanuclein and HIRA cooperate for de novo assembly of H3.3-containing nucleosomes in the male pronucleus. PLoS Genet. 2013;9(2):e1003285. DOI 10.1371/journal.pgen.1003285.

52. Perpelescu M., Nozaki N., Obuse C., Yang H., Yoda K. Active es-tablishment of centromeric CENP-A chromatin by RSF complex. J. Cell Biol. 2009;185(3):397-407. DOI 10.1083/jcb.200903088.

53. Piatti P., Lim C.Y., Nat R., Villunger A., Geley S., Shue Y.T., Soratroi C., Moser M., Lusser A. Embryonic stem cell differentiation requires full length Chd1. Sci. Rep. 2015;5:8007. DOI 10.1038/srep0800.

54. Podhraski V, Campo-Fernandez B., Worle H., Piatti P., Niederegger H., Bock G., Fyodorov D.V., Lusser A. CenH3/CID incorporation is not dependent on the chromatin assembly factor CHD1 in Drosophila. PLoS One. 2010;5(4):e10120. DOI 10.1371/journal.pone.0010120.

55. Pointner J., Persson J., Prasad P., Norman-Axelsson U., Stralfors A., Khorosjutina O., Krietenstein N., Svensson J.P., Ekwall K., Kor- ber P. CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J. 2012;31(23):4388-4403. DOI 10.1038/emboj.2012.289.

56. Radman-Livaja M., Quan T.K., Valenzuela L., Armstrong J.A., van Wel- sem T., Kim T., Lee L.J., Buratowski S., van Leeuwen F., Rando O.J., Hartzog G.A. A key role for Chdl in histone H3 dynamics at the 3' ends of long genes in yeast. PLoS Genet. 2012;8(7):e1002811. DOI 10.1371/journal.pgen.1002811.

57. Robinson K.M., Schultz M.C. Replication-independent assembly of nucleosome arrays in a novel yeast chromatin reconstitution sys-tem involves antisilencing factor Asf1p and chromodomain protein Chd1p. Mol. Cell. Biol. 2003;23(22):7937-7946.

58. Scacchetti A., Brueckner L., Jain D., Schauer T., Zhang X., Schnor- rer F., van Steensel B., Straub T., Becker P.B. CHRAC/ACF contri-bute to the repressive ground state of chromatin. Life Sci. Alliance. 2018;1(1):e201800024. DOI 10.26508/lsa.201800024.

59. Schneiderman J.I., Orsi G.A., Hughes K.T., Loppin B., Ahmad K. Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant. Proc. Natl. Acad. Sci. USA. 2012;109(48): 19721-19726. DOI 10.1073/pnas.1206629109.

60. Schneiderman J.I., Sakai A., Goldstein S., Ahmad K. The XNP remodel¬er targets dynamic chromatin in Drosophila. Proc. Natl. Acad. Sci. USA. 2009;106(34):14472-14477. DOI 10.1073/pnas. 0905816106.

61. Semba Y., Harada A., Maehara K., Oki S., Meno C., Ueda J., Yama- gata K., Suzuki A., Onimaru M., Nogami J., Okada S., Akashi K., Ohkawa Y. Chd2 regulates chromatin for proper gene expression to¬ward differentiation in mouse embryonic stem cells. Nucleic Acids Res. 2017;6;45(15):8758-8772. DOI 10.1093/nar/gkx475.

62. Serra-Cardona A., Zhang Z. Replication-coupled nucleosome assembly in the passage of epigenetic information and cell identity. Trends Biochem. Sci. 2018;43(2):136-148. DOI 10.1016/j.tibs.2017.12.003.

63. Shenoy T.R., Boysen G., Wang M.Y., Xu Q.Z., Guo W., Koh F.M., Wang C., Zhang L.Z., Wang Y., Gil V., Aziz S., Christova R., Rod-rigues D.N., Crespo M., Rescigno P., Tunariu N., Riisnaes R., Zafei- riou Z., Flohr P., Yuan W., Knight E., Swain A., Ramalho-Santos M., Xu D.Y., de Bono J., Wu H. CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair. Ann. Oncol. 2017;28(7):1495-1507. DOI 10.1093/ annonc/mdx165.

64. Simic R., Lindstrom D.L., Tran H.G., Roinick K.L., Costa P.J., John-son A.D., Hartzog G.A., Arndt K.M. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 2003;22(8):1846-1856.

65. Siriaco G., Deuring R., Chioda M., Becker P.B., Tamkun J.W. Dro-sophila ISWI regulates the association of histone H1 with inter-phase chromosomes in vivo. Genetics. 2009;182(3):661-669. DOI 10.1534/genetics.109.10205.

66. Smolle M., Venkatesh S., Gogol M.M., Li H., Zhang Y., Florens L., Washburn M.P., Workman J.L. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by prevent¬ing histone exchange. Nat. Struct. Mol. Biol. 2012;19(9):884-892. DOI 10.1038/nsmb.2312.

67. Strohner R., Nemeth A., Jansa P., Hofmann-Rohrer U., Santoro R., Langst G., Grummt I. NoRC-a novel member of mammalian ISWI- containing chromatin remodeling machines. EMBO J. 2001;20(17): 4892-4900.

68. Tagami H., Ray-Gallet D., Almouzni G., Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 2004;1116(1):51-61.

69. Torigoe S.E., Patel A., Khuong M.T., Bowman G.D., Kadonaga J.T. ATP- dependent chromatin assembly is functionally distinct from chro¬matin remodeling. Elife. 2013;2:e00863. DOI 10.7554/eLife.00863.

70. Torigoe S.E., Urwin D.L., Ishii H., Smith D.E., Kadonaga J.T. Iden-tification of a rapidly formed nonnucleosomal histone-DNA inter-mediate that is converted into chromatin by ACF. Mol. Cell. 2011; 43(4):638-648. DOI 10.1016/j.molcel.2011.07.017.

71. Torres-Padilla M.E., Bannister A.J., Hurd P.J., Kouzarides T., Zernicka- Goetz M. Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int. J. Dev. Biol. 2006;50(5):455-461.

72. Tyler J.K. Chromatin assembly. Cooperation between histone chaper-ones and ATP-dependent nucleosome remodeling machines. Eur. J. Biochem. 2002;269(9):2268-2274.

73. Vary J.C. Jr., Gangaraju V.K., Qin J., Landel C.C., Kooperberg C., Bar¬tholomew B., Tsukiyama T. Yeast Isw1p forms two separable com¬plexes in vivo. Mol. Cell. Biol. 2003;23(1):80-91.

74. Venkatesh S., Workman J.L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 2015; 16(3):178-189. DOI 10.1038/nrm3941.

75. Vincent J.A., Kwong T.J., Tsukiyama T. ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat. Struct. Mol. Biol. 2008;15(5):477-484. DOI 10.1038/nsmb.1419.

76. Walfridsson J., Bjerling P., Thalen M., Yoo E.J., Park S.D., Ekwall K. The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res. 2005;33(9):2868-2879.

77. Wong L.H., McGhie J.D., Sim M., Anderson M.A., Ahn S., Han¬nan R.D., George A.J., Morgan K.A., Mann J.R., Choo K.H. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 2010;20(3):351- 360. DOI 10.1101/gr.101477.109.

78. Xella B., Goding C., Agricola E., Di Mauro E., Caserta M. The ISWI and CHD1 chromatin remodelling activities influence ADH2 ex-pression and chromatin organization. Mol. Microbiol. 2006;59(5): 1531-1541.

79. Yadav T., Whitehouse I. Replication-coupled nucleosome assembly and positioning by ATP-dependent chromatin-remodeling enzymes. Cell Rep. 2016;15(4):715-723. DOI 10.1016/j.celrep.2016.03.059.

80. Yang J.H., Song Y., Seol J.H., Park J.Y., Yang Y.J., Han J.W., Youn H.D., Cho E.J. Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition. Proc. Natl. Acad. Sci. USA. 2011;108(1):85-90. DOI 10.1073/pnas.1009830108.

81. Zhou J., Li J., Serafim R.B., Ketchum S., Ferreira C.G., Liu J.C., Coe K.A., Price B.D., Yusufzai T. Human CHD1 is required for early DNA-damage signaling and is uniquely regulated by its N termi-nus. Nucleic Acids Res. 2018;46(8):3891-3905. DOI 10.1093/nar/ gky128.


Просмотров: 109


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)