Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Different functions of PHF10 isoforms – subunits of the PBAF chromatin remodeling complex

https://doi.org/10.18699/VJ19.480

Abstract

Chromatin remodelling multiprotein complexes play an important role in regulation of gene expression in embryogenesis and in the adult organism. Mutations in the subunits of the complexes are often lethal or lead to developmental defects. Complexes consist of core subunits and a specific module. The core consists of ATPase and structure subunits, specific subunits of the module are necessary for chromatin binding. PHF10 (PHD finger protein 10) is a subunit of the PBAF (polybromo-associated BAF) chromatin remodelling complex subfamily. Conserved and highly regulated PHF10 is ubiquitously expressed in mammals as four different isoforms. The isoforms of PHF10 differ by domain structures and posttranslational modifications. All isoforms are highly regulated and included in the PBAF complex in a mutually exclusive manner. Two of the PHF10 isoforms (PHF10-P) are expressed at a high level in neuronal and myeloid progenitors and are necessary for cell proliferation. These isoforms contain PHD (plant homeodomain) fingers for nucleosome binding and recruit RNA polymerase II on the promoters of cell cycle genes. Two other isoforms (PHF10-S) instead of PHD have PDSM (phosphorylation-dependent sumoylation motif), the motif for SUMO1 conjugation. PHF10 is the most unstable subunit of the PBAF complex. Stability can alter the turnover rate of the subunits of the PBAF complex. All PHF10 isoforms are degraded by β-TrCP ubiquitin ligase but PHF10-S isoforms contain a cluster of serins (X-cluster) for multiple phosphorylation by casein kinase I. This phosphorylation protects the β-TrCP degron from β-TrCP recognition and subsequently stabilizes the PHF10-S isoforms. Thus, the incorporation of PHF10 isoforms with different phosphorylation patterns and different stability into the PBAF complexes alters the functions of the entire PBAF complex and determines the range of genes undergoing remodelling.

About the Authors

A. A. Sheynov
Institute of Gene Biology, RAS, Department of Eukariotic Transcription Factors.
Russian Federation
Moscow.


V. V. Tatarskiy
Institute of Gene Biology, RAS, Department of Eukariotic Transcription Factors.
Russian Federation
Moscow.


A. M. Azieva
Institute of Gene Biology, RAS, Department of Eukariotic Transcription Factors; National Research Center “Kurchatov Institute”.
Russian Federation
Moscow.


S. G. Georgieva
Institute of Gene Biology, RAS, Department of Eukariotic Transcription Factors.
Russian Federation
Moscow.


N. V. Soshnikova
Institute of Gene Biology, RAS, Department of Eukariotic Transcription Factors.
Russian Federation
Moscow.


References

1. Allen M.D., Freund S.M.V., Zinzalla G., Bycroft M. the SWI/SNF subunit INI1 contains an N-terminal winged helix DNA binding do¬main that is a target for mutations in schwannomatosis. Structure. 2015;23(7):1344-1349. DOI 10.1016/j.str.2015.04.021.

2. Azieva A.M., Sheinov A.A., Galkin F.A., Georgieva S.G., Soshniko- va N.V. Stability of chromatin remodeling complex subunits is de-termined by their phosphorylation status. Dokl. Biochem. Biophys. 2018;479(1):66-68. DOI 10.1134/S1607672918020035.

3. Brechalov A.V., Georgieva S.G., Soshnikova N.V. Mammalian cells contain two functionally distinct PBAF complexes incorporat¬ing different isoforms of PHF10 signature subunit. Cell Cycle. 2014;13(12):1970-1979. DOI 10.4161/cc.28922.

4. Brechalov A.V., Valieva M.E., Georgieva S.G., Soshnikova N.V. PHF10 isoforms are phosphorylated in the PBAF mammalian chromatin re¬modeling complex. Mol. Biol. 2016;50(2):278-283. DOI 10.1134/ S0026893316010039.

5. Cui H., Schlesinger J., Schoenhals S., Tonjes M., Dunkel I., Meier- hofer D., Cano E., Schulz K., Berger M.F., Haack T., Abdelilah- Seyfried S., Bulyk M. L., Sauer S., Sperling S.R. Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA. Nucleic Acids Res. 2016;44(6):2538-2553. DOI 10.1093/nar/gkv1244.

6. FlyBase. n.d. “FlyBase Gene Report: Dmele(y)3.” Accessed January 18, 2019. http://flybase.org/reports/FBgn0087008.

7. Hafumi N., Hashimoto K., Panchenko A.R. Phosphorylation in protein- protein binding: effect on stability and function. Structure. 2011; 19(12):1807-1815. DOI 10.1016/j.str.2011.09.021.

8. Ho L., Crabtree G.R. Chromatin remodelling during development. Na-ture. 2010;463(7280):474-484. DOI 10.1038/nature08911.

9. Hodges C., Kirkland J.G., Crabtree G.R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Per- spect. Med. 2016;6(8):a026930. DOI 10.1101/cshperspect.a026930.

10. Hyun K., Jeon J., Park K., Kim J. Writing, erasing and reading his¬tone lysine methylations. Exp. Mol. Med. 2017;49(4): e324. DOI 10.1038/emm.2017.11.

11. Krasteva V., Crabtree G.R., Lessard J.A. The BAF45a/PHF10 subunit of SWI/SNF-like chromatin remodeling complexes is essential for hematopoietic stem cell maintenance. Exp. Hematol. 2017;48:58- 71.e15. DOI 10.1038/emm.2017.11.

12. Lessard J., Wu J.I., Ranish J.A.,Wan M.,Winslow M.M., Staahl B.T., Wu H., Aebersold R., Graef I.A., Crabtree G.R. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 2007;55(2):201-215. DOI 10.1016/j. neuron.2007.06.019.

13. Liu C., Li Y., Semenov M., Han C., Baeg G.H., Tan Y., Zhang Z., Lin X., He X. Control of P-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108(6):837-847. DOI 10.1016/ s0092-8674(02)00685-2.

14. Masliah-Planchon J., Bieche I., Guinebretiere J.M., Bourdeaut F., Delattre O. SWI/SNF chromatin remodeling and human malignan-cies. Annu. Rev. Pathol. 2015;10:145-171. DOI 10.1146/annurev- pathol-012414-040445.

15. Phosphosite Knowledgebase. n.d. Accessed October 22, 2018. http:// phosphosite.org.

16. Sears R., Nuckolls F., Haura E., Taya Y., Tamaid K., Nevins J.R. Mul¬tiple Ras-dependent phosphorylation pathways regulate myc protein stability. Genes Dev. 2000;14(19):2501-2514. https://www.ncbi. nlm.nih.gov/pubmed/11018017.

17. Seeler J.S., Dejean A. SUMO and the robustness of cancer. Nat. Rev. Cancer. 2017;17(3):184-197. DOI 10.1038/nrc.2016.143.

18. Simone C. SWI/SNF: the crossroads where extracellular signaling pathways meet chromatin. J. Cell. Physiol. 2006;207(2):309-314. DOI 10.1002/jcp.20514.

19. Tang L., Nogales E., Ciferri C. Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog. Biophys. Mol. Biol. 2010;102(2-3):122-128.

20. Tatarskiy V.V., Simonov Y.P., Shcherbinin D.S., Brechalov A.V., Geor¬gieva S.G., Soshnikova N.V. Stability of the PHF10 subunit of PBAF signature module is regulated by phosphorylation: role of P-TrCP. Sci. Rep. 2017;7(1):5645. DOI 10.1038/s41598-017-05944-3.

21. Tissue expression of PHF10 - Summary - The Human Protein Atlas. n.d. Accessed October 22,2018.

22. Vignali M.A., Hassan H., Neely K.E., Workman J.L. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol. 2000;20(6):1899- 1910. https://www.ncbi.nlm.nih.gov/pubmed/10688638.

23. Vorobyeva N.E., Soshnikova N.V., Kuzmina J.L., Kopantseva M.R., Nikolenko J.V., Nabirochkina E.N., Georgieva S.G., Shidlovskii Y.V. The novel regulator of metazoan development SAYP organizes a nu¬clear coactivator supercomplex. Cell Cycle. 2009;8(14):2152-2156. DOI 10.4161/cc.8.14.9115. https://www.proteinatlas.org/ENSG00000130024-PHF10/tissue


Review

Views: 839


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)