Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Generation of barcoded plasmid libraries for massively parallel analysis of chromatin position effects

https://doi.org/10.18699/VJ19.483

Abstract

The discovery of the position effect variegation phenomenon and the subsequent comprehensive analysis of its molecular mechanisms led to understanding that the local chromatin composition has a dramatic effect on gene activity. To study this effect in a high-throughput mode and at the genome-wide level, the Thousands of Reporters Integrated in Parallel (TRIP) approach based on the usage of barcoded reporter gene constructs was recently developed. Here we describe the construction and quality checks of high-diversity barcoded plasmid libraries supposed to be used for high-throughput analysis of chromatin position effects in Drosophila cells. First, we highlight the critical parameters that should be considered in the generation of barcoded plasmid libraries and introduce a simple method to assess the diversity of random sequences (barcodes) of synthetic oligonucleotides using PCR amplification followed by Sanger sequencing. Second, we compare the conventional restriction-ligation method with the Gibson assembly approach for cloning barcodes into the same plasmid vector. Third, we provide optimized parameters for the construction of barcoded plasmid libraries, such as the vector : insert ratio in the Gibson assembly reaction and the voltage used for electroporation of bacterial cells with ligation products. We also compare different approaches to check the quality of barcoded plasmid libraries. Finally, we briefly describe alternative approaches that can be used for the generation of such libraries. Importantly, all improvements and modifications of the techniques described here can be applied to a wide range of experiments involving barcoded plasmid libraries.

About the Authors

M. O. Lebedev
Institute of Molecular and Cellular Biology, SB RAS; Novosibirsk State University.
Russian Federation
Novosibirsk.


L. A. Yarinich
Institute of Molecular and Cellular Biology, SB RAS; Novosibirsk State University.
Russian Federation
Novosibirsk.


A. V. Ivankin
Institute of Molecular and Cellular Biology, SB RAS.
Russian Federation
Novosibirsk.


A. V. Pindyurin
Institute of Molecular and Cellular Biology, SB RAS; Novosibirsk State University.
Russian Federation
Novosibirsk.


References

1. Akhtar W., de Jong J., Pindyurin A.V., Pagie L., Meuleman W., de Rid- der J., Berns A., Wessels L.F., van Lohuizen M., van Steensel B. Chromatin position effects assayed by thousands of reporters in¬tegrated in parallel. Cell. 2013;154:914-927. DOI 10.1016/j.cell. 2013.07.018.

2. Akhtar W., Pindyurin A.V., de Jong J., Pagie L., Ten Hoeve J., Berns A., Wessels L.F., van Steensel B., van Lohuizen M. Using TRIP for genome-wide position effect analysis in cultured cells. Nat. Protoc. 2014;9:1255-1281. DOI 10.1038/nprot.2014.072.

3. Babenko V.N., Makunin I.V., Brusentsova I.V., Belyaeva E.S., Maksi¬mov D.A., Belyakin S.N., Maroy P, Vasil’eva L.A., Zhimulev I.F. Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome. BMC Genomics. 2010;11: 318. DOI 10.1186/1471-2164-11-318.

4. Babu A., Verma R.S. Chromosome structure: euchromatin and hetero¬chromatin. Int. Rev. Cytol. 1987;108:1-60.

5. Blundell J.R., Levy S.F. Beyond genome sequencing: lineage tracking with barcodes to study the dynamics of evolution, infection, and can¬cer. Genomics. 2014;104:417-430. DOI 10.1038/nature14279.

6. Brueckner L., van Arensbergen J., Akhtar W., Pagie L., van Steensel B. High-throughput assessment of context-dependent effects of chro¬matin proteins. Epigenetics Chromatin. 2016;9:43. DOI 10.1186/ s13072-016-0096-y.

7. Cadinanos J., Bradley A. Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res. 2007;35:e87. DOI 10.1093/nar/gkm446.

8. Chen H.C., Martinez J.P., Zorita E., Meyerhans A., Filion G.J. Position effects influence HIV latency reversal. Nat. Struct. Mol. Biol. 2017; 24:47-54. DOI 10.1038/nsmb.3328.

9. Chen M., Licon K., Otsuka R., Pillus L., Ideker T. Decoupling epige-netic and genetic effects through systematic analysis of gene posi-tion. Cell Rep. 2013;3:128-137. DOI 10.1016/j.celrep.2012.12.003.

10. Davidsson M., Diaz-Fernandez P., Schwich O.D., Torroba M., Wang G., Bjorklund T. A novel process of viral vector barcoding and library preparation enables high-diversity library generation and recombination-free paired-end sequencing. Sci. Rep. 2016;6:37563. DOI 10.1038/srep37563.

11. Dickel D.E., Zhu Y., Nord A.S., Wylie J.N., Akiyama J.A., Afzal V., Plajzer-Frick I., Kirkpatrick A., Gottgens B., Bruneau B.G., Visel A., Pennacchio L.A. Function-based identification of mammalian enhancers using site-specific integration. Nat. Methods. 2014;11:566- 571. DOI 10.1038/nmeth.2886.

12. Elgin S.C., Reuter G. Position-effect variegation, heterochromatin for-mation, and gene silencing in Drosophila. Cold Spring Harb. Per- spect. Biol. 2013;5:a017780. DOI 10.1101/cshperspect.a017780.

13. Ernst J., Kheradpour P., Mikkelsen T.S., Shoresh N., Ward L.D., Ep-stein C.B., Zhang X., Wang L., Issner R., Coyne M., Ku M., Dur-ham T., Kellis M., Bernstein B.E. Mapping and analysis of chroma¬tin state dynamics in nine human cell types. Nature. 2011;473:43-49. DOI 10.1038/nature09906.

14. Filion G.J., van Bemmel J.G., Braunschweig U., Talhout W., Kind J., Ward L.D., Brugman W., de Castro I.J., Kerkhoven R.M., Busse- maker H.J., van Steensel B. Systematic protein location mapping re¬veals five principal chromatin types in Drosophila cells. Cell. 2010; 143:212-224. DOI 10.1016/j.cell.2010.09.009.

15. Gibson D.G., Young L., Chuang R.Y., Venter J.C., Hutchison C.A. 3rd, Smith H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 2009;6:343-345. DOI 10.1038/ nmeth.1318.

16. Gierman H.J., Indemans M.H., Koster J., Goetze S., Seppen J., Geerts D., van Driel R., Versteeg R. Domain-wide regulation of gene expression in the human genome. Genome Res. 2007;17:1286-1295. DOI 10.1101/gr.6276007.

17. Grewal S.I., Moazed D. Heterochromatin and epigenetic control of gene expression. Science. 2003;301:798-802. DOI 10.1126/science. 1086887.

18. Handler A.M., Harrell R.A. 2nd. Germline transformation of Droso-phila melanogaster with the piggyBac transposon vector. Insect Mol. Biol. 1999;8:449-457. DOI 10.1046/j.1365-2583.1999.00139.x.

19. Hill A.J., McFaline-Figueroa J.L., Starita L.M., Gasperini M.J., Mat- reyek K.A., Packer J., Jackson D., Shendure J., Trapnell C. On the design of CRISPR-based single-cell molecular screens. Nat. Me-thods. 2018;15:271-274. DOI 10.1038/nmeth.4604.

20. Huisinga K.L., Brower-Toland B., Elgin S.C. The contradictory defini¬tions of heterochromatin: transcription and silencing. Chromosoma. 2006;115:110-122. DOI 10.1007/s00412-006-0052-x.

21. Kebschull J.M., Zador A.M. Cellular barcoding: lineage tracing, screen¬ing and beyond. Nat. Methods. 2018;15:871-879. DOI 10.1038/ s41592-018-0185-x.

22. Kharchenko P.V., Alekseyenko A.A., Schwartz Y.B., Minoda A., Rid-dle N.C., Ernst J., Sabo P.J., Larschan E., Gorchakov A.A., Gu T., Linder-Basso D., Plachetka A., Shanower G., Tolstorukov M.Y., Luquette L.J., Xi R., Jung Y.L., Park R.W., Bishop E.P., Can¬field T.K., Sandstrom R., Thurman R.E., MacAlpine D.M., Stama- toyannopoulos J.A., Kellis M., Elgin S.C., Kuroda M.I., Pirrotta V., Karpen G.H., Park PJ. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature. 2011;471:480-485. DOI 10.1038/nature09725.

23. Kinde I., Wu J., Papadopoulos N., Kinzler K.W., Vogelstein B. Detec-tion and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. USA. 2011;108:9530-9535. DOI 10.1073/pnas.1105422108.

24. Lehtonen S.I., Taskinen B., Ojala E., Kukkurainen S., Rahikainen R., Riihimaki T.A., Laitinen O.H., Kulomaa M.S., Hytonen V.P. Effi-cient preparation of shuffled DNA libraries through recombination (Gateway) cloning. Protein Eng. Des. Sel. 2015;28:23-28. DOI 10.1093/protein/gzu050.

25. Melnikov A., Murugan A., Zhang X., Tesileanu T., Wang L., Rogov P., Feizi S., Gnirke A., Callan C.G., Jr., Kinney J.B., Kellis M., Lan¬der E.S., Mikkelsen T.S. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 2012;30:271-277. DOI 10.1038/nbt. 2137.

26. Morrison S.L. Transformation of E. coli by electroporation. Curr. Pro- toc. Immunol. 2001;21(1):A.3N.1-A.3N.4. DOI 10.1002/0471142735. ima03ns21.

27. Patwardhan R.P., Hiatt J.B., Witten D.M., Kim M.J., Smith R.P., May D., Lee C., Andrie J.M., Lee S.I., Cooper G.M., Ahituv N., Pennacchio L.A., Shendure J. Massively parallel functional dissec-tion of mammalian enhancers in vivo. Nat. Biotechnol. 2012;30:265- 270. DOI 10.1038/nbt.2136.

28. Patwardhan R.P., Lee C., Litvin O., Young D.L., Pe’er D., Shendure J. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 2009;27:1173-1175. DOI 10.1038/nbt.1589.

29. Quail M.A., Smith M., Jackson D., Leonard S., Skelly T., Swerd- low H.P., Gu Y., Ellis P. SASI-Seq: sample assurance Spike-Ins, and highly differentiating 384 barcoding for Illumina sequencing. BMC Genomics. 2014;15:110. DOI 10.1186/1471-2164-15-110.

30. Riddle N.C., Minoda A., Kharchenko P.V., Alekseyenko A.A., Schwartz Y.B., Tolstorukov M.Y., Gorchakov A.A., Jaffe J.D., Ken¬nedy C., Linder-Basso D., Peach S.E., Shanower G., Zheng H., Ku- roda M.I., Pirrotta V, Park P.J., Elgin S.C., Karpen G.H. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res. 2011;21:147-163. DOI 10.1101/gr.110098.110.

31. Ruf S., Symmons O., Uslu V.V., Dolle D., Hot C., Ettwiller L., Spitz F. Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nat. Genet. 2011;43: 379-386. DOI 10.1038/ng.790.

32. Seguin-Orlando A., Schubert M., Clary J., Stagegaard J., Alberdi M.T., Prado J.L., Prieto A., Willerslev E., Orlando L. Ligation bias in Il- lumina next-generation DNA libraries: implications for sequencing ancient genomes. PLoS One. 2013;8:e78575. DOI 10.1371/journal. pone.0078575.

33. Vvedenskaya I.O., Zhang Y., Goldman S.R., Valenti A., Visone V., Taylor D.M., Ebright R.H., Nickels B.E. Massively Systematic Transcript End Readout, “MASTER”: transcription start site selec-tion, transcriptional slippage, and transcript yields. Mol. Cell. 2015; 60:953-965. DOI 10.1016/j.molcel.2015.10.029.

34. Wong A.S., Choi G.C., Cui C.H., Pregernig G., Milani P., Adam M., Perli S.D., Kazer S.W., Gaillard A., Hermann M., Shalek A.K., Fraenkel E., Lu T.K. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc. Natl. Acad. Sci. USA. 2016;113:2544- 2549. DOI 10.1073/pnas.1517883113.

35. Woodruff L.B.A., Gorochowski T.E., Roehner N., Mikkelsen T.S., Densmore D., Gordon D.B., Nicol R., Voigt C.A. Registry in a tube: multiplexed pools of retrievable parts for genetic design space exploration. Nucleic Acids Res. 2017;45:1553-1565. DOI 10.1093/ nar/gkw1226.

36. Yankulov K. Dynamics and stability: epigenetic conversions in position effect variegation. Biochem. Cell Biol. 2013;91:6-13. DOI 10.1139/ bcb-2012-0048.


Review

Views: 1064


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)