1. Beerli R.R., Dreier B., Barbas C.F. 3rd. Positive and negative regula-tion of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA. 2000;97(4):1495-1500. https://doi.org/10.1073/pnas. 040552697.
2. Berg J.M. Proposed structure for the zinc-binding domains from tran-scription factor IIIA and related proteins. Proc. Natl. Acad. Sci. USA. 1988;85(1):99-102.
3. Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., La- haye T., Nickstadt A., Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509- 1512. https://doi.org/10.1126/science.1178811.
4. Choo Y., Klug A. Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc. Natl. Acad. Sci. USA. 1994a;91(23):11168-11172.
5. Choo Y., Klug A. Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc. Natl. Acad. Sci. USA. 1994b;91(23):11163-11167.
6. Choo Y., Sanchez-Garcia I., Klug A. In vivo repression by a site-spe-cific DNA-binding protein designed against an oncogenic sequence. Nature. 1994;372(6507):642-645. https://doi.org/10.1038/372642a0.
7. Cong L., Zhou R., Kuo Y.C., Cunniff M., Zhang F. Comprehensive interrogation of natural TALE DNA-binding modules and transcrip¬tional repressor domains. Nat. Commun. 2012;3:968. https://doi.org/10.1038/ ncomms1962.
8. Dent C.L., Lau G., Drake E.A., Yoon A., Case C.C., Gregory P.D. Regulation of endogenous gene expression using small molecule- controlled engineered zinc-finger protein transcription factors. Gene Ther. 2007;14(18):1362-1369. https://doi.org/10.1038/sj.gt.3302985.
9. Geissler R., Scholze H., Hahn S., Streubel J., Bonas U., Behrens S.E., Boch J. Transcriptional activators of human genes with program-mable DNA-specificity. PLoS One. 2011;6(5):e19509. https://doi.org/10.1371/ journal.pone.0019509.
10. Gilbert L.A., Larson M.H., Morsut L., Liu Z., Brar G.A., Torres S.E., Stern-Ginossar N., Brandman O., Whitehead E.H., Doudna J.A., Lim W.A., Weissman J.S., Qi L.S. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-451. https://doi.org/10.m16/j.cell.2013.06.044.
11. Gossen M., Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA. 1992;89(12):5547-5551.
12. Gossen M., Freundlieb S., Bender G., Muller G., Hillen W., Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995;268(5218):1766-1769.
13. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpen- tier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821. https://doi.org/10.1126/science.1225829.
14. Kaberniuk A.A., Shemetov A.A., Verkhusha V.V. A bacterial phyto-chrome-based optogenetic system controllable with near-infrared light. Nat. Methods. 2016;13(7):591-597. https://doi.org/10.1038/nmeth. 3864.
15. Kennedy M.J., Hughes R.M., Peteya L.A., Schwartz J.W., Ehlers M.D., Tucker C.L. Rapid blue-light-mediated induction of protein inter¬actions in living cells. Nat. Methods. 2010;7(12):973-975. https://doi.org/10.1038/nmeth.1524.
16. Klug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 2010; 79:213-231. https://doi.org/10.1146/annurev-biochem-010909-095056.
17. Konermann S., Brigham M.D., Trevino A.E., Hsu P.D., Heidenreich M., Cong L., Platt R.J., Scott D.A., Church G.M., Zhang F. Optical con¬trol of mammalian endogenous transcription and epigenetic states. Nature. 2013;500(7463):472-476. https://doi.org/10.1038/nature12466.
18. Liu P.Q., Rebar E.J., Zhang L., Liu Q., Jamieson A.C., Liang Y., Qi H., Li P.X., Chen B., Mendel M.C., Zhong X., Lee Y.L., Eisenberg S.P., Spratt S.K., Case C.C., Wolffe A.P. Regulation of an endogenous lo¬cus using a panel of designed zinc finger proteins targeted to acces¬sible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem. 2001;276(14):11323-11334. https://doi.org/10.1074/ jbc.M011172200.
19. Maeder M.L., Linder S.J., Cascio V.M., Fu Y., Ho Q.H., Joung J.K. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods. 2013;10(10):977-979. https://doi.org/10.1038/nmeth.2598.
20. Magnenat L., Schwimmer L.J., Barbas C.F. 3rd. Drug-inducible and si¬multaneous regulation of endogenous genes by single-chain nuclear receptor-based zinc-finger transcription factor gene switches. Gene Ther. 2008;15(17):1223-1232. https://doi.org/10.1038/gt.2008.96.
21. Mercer A.C., Gaj T., Sirk S.J., Lamb B.M., Barbas C.F. 3rd. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. ACS Synth. Biol. 2014;3(10):723-730. https://doi.org/10.1021/sb400114p.
22. Miller J.C., Tan S., Qiao G., Barlow K.A., Wang J., Xia D.F., Meng X., Paschon D.E., Leung E., Hinkley S.J., Dulay G.P., Hua K.L., Ankoudinova I., Cost G.J., Urnov F.D., Zhang H.S., Holmes M.C., Zhang L., Gregory P.D., Rebar E.J. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011;29(2):143-148. https://doi.org/10.1038/nbt.1755.
23. Moscou M.J., Bogdanove A.J. A simple cipher governs DNA recogni-tion by TAL effectors. Science. 2009;326(5959):1501. https://doi.org/10.1126/ science.1178817.
24. Muller K., Engesser R., Metzger S., Schulz S., Kampf M.M., Busa- cker M., Steinberg T., Tomakidi P., Ehrbar M., Nagy F., Timmer J., Zubriggen M.D., Weber W. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucle¬ic Acids Res. 2013;41(7):e77. https://doi.org/10.1093/nar/gkt002.
25. Nihongaki Y., Yamamoto S., Kawano F., Suzuki H., Sato M. CRISPR- Cas9-based photoactivatable transcription system. Chem. Biol. 2015;22(2):169-174. https://doi.org/10.1016/j.chembiol.2014.12.011.
26. Nishimasu H., Ran F.A., Hsu P.D., Konermann S., Shehata S.I., Doh- mae N., Ishitani R., Zhang F., Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5):935- 949. https://doi.org/10.1016/j.cell.2014.02.001.
27. Ozkan-Dagliyan I., Chiou Y.Y., Ye R., Hassan B.H., Ozturk N., San- car A. Formation of Arabidopsis Cryptochrome 2 photobodies in mammalian nuclei: application as an optogenetic DNA damage checkpoint switch. J. Biol. Chem. 2013;288(32):23244-23251. https://doi.org/10.1074/jbc.M113.493361.
28. Papworth M., Moore M., Isalan M., Minczuk M., Choo Y., Klug A. Inhibition of herpes simplex virus 1 gene expression by designer zinc-finger transcription factors. Proc. Natl. Acad. Sci. USA. 2003; 100(4):1621-1626. https://doi.org/10.1073/pnas.252773399.
29. Pathak G.P., Spiltoir J.I., Hoglund C., Polstein L.R., Heine-Koskinen S., Gersbach C.A., Rossi J., Tucker C.L. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2. Nucleic Acids Res. 2017;45(20):e167. https://doi.org/10.1093/nar/gkx260.
30. Pavletich N.P., Pabo C.O. Zinc finger-DNA recognition: crystal struc-ture of a Zif268-DNA complex at 2.1 A. Science. 1991;252(5007): 809-817.
31. Perez E.E., Wang J., Miller J.C., Jouvenot Y., Kim K.A., Liu O., Wang N., Lee G., Bartsevich V.V., Lee Y.L., Guschin D.Y., Rupniewski I., Waite A.J., Carpenito C., Carroll R.G., Orange J.S., Urnov F.D., Re¬bar E.J., Ando D., Gregory P.D., Riley J.L., Holmes M.C., June C.H. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 2008;26(7):808- 816. https://doi.org/10.1038/nbt1410.
32. Perez-Pinera P., Kocak D.D., Vockley C.M., Adler A.F., Kabadi A.M., Polstein L.R., Thakore P.I., Glass K.A., Ousterout D.G., Leong K.W., Guilak F., Crawford G.E., Reddy T.E., Gersbach C.A. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods. 2013;10(10):973-976. https://doi.org/10.1038/nmeth.2600.
33. Polstein L.R., Gersbach C.A. Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J. Am. Chem. Soc. 2012;134(40):16480-16483. https://doi.org/10.1021/ ja3065667.
34. Polstein L.R., Gersbach C.A. Light-inducible gene regulation with en-gineered zinc finger proteins. Methods Mol. Biol. 2014;1148:89- 107. https://doi.org/10.1007/978-1-4939-0470-9_7.
35. Polstein L.R., Gersbach C.A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 2015; 11(3):198-200. https://doi.org/10.1038/nchembio.1753.
36. Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S., Ar- kin A.P., Lim W.A. Repurposing CRISPR as an RNA-guided plat-form for sequence-specific control of gene expression. Cell. 2013; 152(5):1173-1183. https://doi.org/10.1016/j.cell.2013.02.022.
37. Rebar E.J., Huang Y., Hickey R., Nath A.K., Meoli D., Nath S., Chen B., Xu L., Liang Y., Jamieson A.C., Zhang L., Spratt S.K., Case C.C., Wolffe A., Giordano F.J. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat. Med. 2002;8(12):1427-1432. https://doi.org/10.1038/nm795.
38. Redchuk T.A., Karasev M.M., Omelina E.S., Verkhusha V.V. Near-infrared light-controlled gene expression and protein targeting in neurons and non-neuronal cells. Chembiochem. 2018;19(12):1334- 1340. https://doi.org/10.1002/cbic.201700642.
39. Redchuk T.A., Omelina E.S., Chernov K.G., Verkhusha V.V. Near-infrared optogenetic pair for protein regulation and spectral mul-tiplexing. Nat. Chem. Biol. 2017;13(6):633-639. https://doi.org/10.1038/ nchembio.2343.
40. Reynolds L., Ullman C., Moore M., Isalan M., West M.J., Clapham P., Klug A., Choo Y. Repression of the HIV-1 5' LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. Proc. Natl. Acad. Sci. USA. 2003;100(4):1615- 1620. https://doi.org/10.1073/pnas.252770699.
41. Rivera V.M., Clackson T., Natesan S., Pollock R., Amara J.F., Kee¬nan T., Magari S.R., Phillips T., Courage N.L., Cerasoli F., Jr., Holt D.A., Gilman M. A humanized system for pharmacologic control of gene expression. Nat. Med. 1996;2(9):1028-1032.
42. Ryu M.H., Gomelsky M. Near-infrared light responsive synthetic c-di- GMP module for optogenetic applications. ACS Synth. Biol. 2014; 3(11):802-810. https://doi.org/10.1021/sb400182x.
43. Shao J., Wang M., Yu G., Zhu S., Yu Y., Heng B.C., Wu J., Ye H. Syn¬thetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proc. Natl. Acad. Sci. USA. 2018;115(29):E6722-E6730. https://doi.org/10.1073/pnas.1802448115.
44. Sternberg S.H., Redding S., Jinek M., Greene E.C., Doudna J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014;507(7490):62-67. https://doi.org/10.1038/nature13011.
45. Wang X., Chen X., Yang Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods. 2012;9(3): 266-269. https://doi.org/10.1038/nmeth.1892.
46. Yazawa M., Sadaghiani A.M., Hsueh B., Dolmetsch R.E. Induction of protein-protein interactions in live cells using light. Nat. Biotechnol. 2009;27(10):941-945. https://doi.org/10.1038/nbt.1569.
47. Zhang F., Cong L., Lodato S., Kosuri S., Church G.M., Arlotta P. Efficient construction of sequence-specific TAL effectors for modu¬lating mammalian transcription. Nat. Biotechnol. 2011;29(2):149- 153. https://doi.org/10.1038/nbt.1775.