Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Optogenetic regulation of endogenous gene transcription in mammals

https://doi.org/10.18699/VJ19.485

Abstract

Despite the rapid development of approaches aimed to precisely control transcription of exogenous genes in time and space, design of systems providing similar tight regulation of endogenous gene expression is much more challenging. However, finding ways to control the activity of endogenous genes is absolutely necessary for further progress in safe and effective gene therapies and regenerative medicine. In addition, such systems are of particular interest for genetics, molecular and cell biology. An ideal system should ensure tunable and reversible spatio-temporal control over transcriptional activity of a gene of interest. Although there are drug-inducible systems for transcriptional regulation of endogenous genes, optogenetic approaches seem to be the most promising for the gene therapy applications, as they are noninvasive and do not exhibit toxicity in comparison with druginducible systems. Moreover, they are not dependent on chemical inducer diffusion rate or pharmacokinetics and exhibit fast activation-deactivation switching. Among optogenetic tools, long-wavelength light-controlled systems are more preferable for use in mammalian tissues in comparison with tools utilizing shorter wavelengths, since far-red/near-infrared light has the maximum penetration depth due to lower light scattering caused by lipids and reduced tissue autofluorescence at wavelengths above 700 nm. Here, we review such light-inducible systems, which are based on synthetic factors that can be targeted to any desired DNA sequence and provide activation or repression of a gene of interest. The factors include zinc finger proteins, transcription activator-like effectors (TALEs), and the CRISPR/Cas9 technology. We also discuss the advantages and disadvantages of these DNA targeting tools in the context of the light-inducible gene regulation systems.

About the Authors

E. S. Omelina
Institute of Molecular and Cellular Biology, SB RAS.
Russian Federation
Novosibirsk.


A. V. Pindyurin
Institute of Molecular and Cellular Biology, SB RAS; Novosibirsk State University.
Russian Federation
Novosibirsk.


References

1. Beerli R.R., Dreier B., Barbas C.F. 3rd. Positive and negative regula-tion of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA. 2000;97(4):1495-1500. DOI 10.1073/pnas. 040552697.

2. Berg J.M. Proposed structure for the zinc-binding domains from tran-scription factor IIIA and related proteins. Proc. Natl. Acad. Sci. USA. 1988;85(1):99-102.

3. Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., La- haye T., Nickstadt A., Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509- 1512. DOI 10.1126/science.1178811.

4. Choo Y., Klug A. Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc. Natl. Acad. Sci. USA. 1994a;91(23):11168-11172.

5. Choo Y., Klug A. Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc. Natl. Acad. Sci. USA. 1994b;91(23):11163-11167.

6. Choo Y., Sanchez-Garcia I., Klug A. In vivo repression by a site-spe-cific DNA-binding protein designed against an oncogenic sequence. Nature. 1994;372(6507):642-645. DOI 10.1038/372642a0.

7. Cong L., Zhou R., Kuo Y.C., Cunniff M., Zhang F. Comprehensive interrogation of natural TALE DNA-binding modules and transcrip¬tional repressor domains. Nat. Commun. 2012;3:968. DOI 10.1038/ ncomms1962.

8. Dent C.L., Lau G., Drake E.A., Yoon A., Case C.C., Gregory P.D. Regulation of endogenous gene expression using small molecule- controlled engineered zinc-finger protein transcription factors. Gene Ther. 2007;14(18):1362-1369. DOI 10.1038/sj.gt.3302985.

9. Geissler R., Scholze H., Hahn S., Streubel J., Bonas U., Behrens S.E., Boch J. Transcriptional activators of human genes with program-mable DNA-specificity. PLoS One. 2011;6(5):e19509. DOI 10.1371/ journal.pone.0019509.

10. Gilbert L.A., Larson M.H., Morsut L., Liu Z., Brar G.A., Torres S.E., Stern-Ginossar N., Brandman O., Whitehead E.H., Doudna J.A., Lim W.A., Weissman J.S., Qi L.S. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-451. DOI 10.m16/j.cell.2013.06.044.

11. Gossen M., Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA. 1992;89(12):5547-5551.

12. Gossen M., Freundlieb S., Bender G., Muller G., Hillen W., Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995;268(5218):1766-1769.

13. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpen- tier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821. DOI 10.1126/science.1225829.

14. Kaberniuk A.A., Shemetov A.A., Verkhusha V.V. A bacterial phyto-chrome-based optogenetic system controllable with near-infrared light. Nat. Methods. 2016;13(7):591-597. DOI 10.1038/nmeth. 3864.

15. Kennedy M.J., Hughes R.M., Peteya L.A., Schwartz J.W., Ehlers M.D., Tucker C.L. Rapid blue-light-mediated induction of protein inter¬actions in living cells. Nat. Methods. 2010;7(12):973-975. DOI 10.1038/nmeth.1524.

16. Klug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 2010; 79:213-231. DOI 10.1146/annurev-biochem-010909-095056.

17. Konermann S., Brigham M.D., Trevino A.E., Hsu P.D., Heidenreich M., Cong L., Platt R.J., Scott D.A., Church G.M., Zhang F. Optical con¬trol of mammalian endogenous transcription and epigenetic states. Nature. 2013;500(7463):472-476. DOI 10.1038/nature12466.

18. Liu P.Q., Rebar E.J., Zhang L., Liu Q., Jamieson A.C., Liang Y., Qi H., Li P.X., Chen B., Mendel M.C., Zhong X., Lee Y.L., Eisenberg S.P., Spratt S.K., Case C.C., Wolffe A.P. Regulation of an endogenous lo¬cus using a panel of designed zinc finger proteins targeted to acces¬sible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem. 2001;276(14):11323-11334. DOI 10.1074/ jbc.M011172200.

19. Maeder M.L., Linder S.J., Cascio V.M., Fu Y., Ho Q.H., Joung J.K. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods. 2013;10(10):977-979. DOI 10.1038/nmeth.2598.

20. Magnenat L., Schwimmer L.J., Barbas C.F. 3rd. Drug-inducible and si¬multaneous regulation of endogenous genes by single-chain nuclear receptor-based zinc-finger transcription factor gene switches. Gene Ther. 2008;15(17):1223-1232. DOI 10.1038/gt.2008.96.

21. Mercer A.C., Gaj T., Sirk S.J., Lamb B.M., Barbas C.F. 3rd. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. ACS Synth. Biol. 2014;3(10):723-730. DOI 10.1021/sb400114p.

22. Miller J.C., Tan S., Qiao G., Barlow K.A., Wang J., Xia D.F., Meng X., Paschon D.E., Leung E., Hinkley S.J., Dulay G.P., Hua K.L., Ankoudinova I., Cost G.J., Urnov F.D., Zhang H.S., Holmes M.C., Zhang L., Gregory P.D., Rebar E.J. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011;29(2):143-148. DOI 10.1038/nbt.1755.

23. Moscou M.J., Bogdanove A.J. A simple cipher governs DNA recogni-tion by TAL effectors. Science. 2009;326(5959):1501. DOI 10.1126/ science.1178817.

24. Muller K., Engesser R., Metzger S., Schulz S., Kampf M.M., Busa- cker M., Steinberg T., Tomakidi P., Ehrbar M., Nagy F., Timmer J., Zubriggen M.D., Weber W. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucle¬ic Acids Res. 2013;41(7):e77. DOI 10.1093/nar/gkt002.

25. Nihongaki Y., Yamamoto S., Kawano F., Suzuki H., Sato M. CRISPR- Cas9-based photoactivatable transcription system. Chem. Biol. 2015;22(2):169-174. DOI 10.1016/j.chembiol.2014.12.011.

26. Nishimasu H., Ran F.A., Hsu P.D., Konermann S., Shehata S.I., Doh- mae N., Ishitani R., Zhang F., Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5):935- 949. DOI 10.1016/j.cell.2014.02.001.

27. Ozkan-Dagliyan I., Chiou Y.Y., Ye R., Hassan B.H., Ozturk N., San- car A. Formation of Arabidopsis Cryptochrome 2 photobodies in mammalian nuclei: application as an optogenetic DNA damage checkpoint switch. J. Biol. Chem. 2013;288(32):23244-23251. DOI 10.1074/jbc.M113.493361.

28. Papworth M., Moore M., Isalan M., Minczuk M., Choo Y., Klug A. Inhibition of herpes simplex virus 1 gene expression by designer zinc-finger transcription factors. Proc. Natl. Acad. Sci. USA. 2003; 100(4):1621-1626. DOI 10.1073/pnas.252773399.

29. Pathak G.P., Spiltoir J.I., Hoglund C., Polstein L.R., Heine-Koskinen S., Gersbach C.A., Rossi J., Tucker C.L. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2. Nucleic Acids Res. 2017;45(20):e167. DOI 10.1093/nar/gkx260.

30. Pavletich N.P., Pabo C.O. Zinc finger-DNA recognition: crystal struc-ture of a Zif268-DNA complex at 2.1 A. Science. 1991;252(5007): 809-817.

31. Perez E.E., Wang J., Miller J.C., Jouvenot Y., Kim K.A., Liu O., Wang N., Lee G., Bartsevich V.V., Lee Y.L., Guschin D.Y., Rupniewski I., Waite A.J., Carpenito C., Carroll R.G., Orange J.S., Urnov F.D., Re¬bar E.J., Ando D., Gregory P.D., Riley J.L., Holmes M.C., June C.H. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 2008;26(7):808- 816. DOI 10.1038/nbt1410.

32. Perez-Pinera P., Kocak D.D., Vockley C.M., Adler A.F., Kabadi A.M., Polstein L.R., Thakore P.I., Glass K.A., Ousterout D.G., Leong K.W., Guilak F., Crawford G.E., Reddy T.E., Gersbach C.A. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods. 2013;10(10):973-976. DOI 10.1038/nmeth.2600.

33. Polstein L.R., Gersbach C.A. Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J. Am. Chem. Soc. 2012;134(40):16480-16483. DOI 10.1021/ ja3065667.

34. Polstein L.R., Gersbach C.A. Light-inducible gene regulation with en-gineered zinc finger proteins. Methods Mol. Biol. 2014;1148:89- 107. DOI 10.1007/978-1-4939-0470-9_7.

35. Polstein L.R., Gersbach C.A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 2015; 11(3):198-200. DOI 10.1038/nchembio.1753.

36. Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S., Ar- kin A.P., Lim W.A. Repurposing CRISPR as an RNA-guided plat-form for sequence-specific control of gene expression. Cell. 2013; 152(5):1173-1183. DOI 10.1016/j.cell.2013.02.022.

37. Rebar E.J., Huang Y., Hickey R., Nath A.K., Meoli D., Nath S., Chen B., Xu L., Liang Y., Jamieson A.C., Zhang L., Spratt S.K., Case C.C., Wolffe A., Giordano F.J. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat. Med. 2002;8(12):1427-1432. DOI 10.1038/nm795.

38. Redchuk T.A., Karasev M.M., Omelina E.S., Verkhusha V.V. Near-infrared light-controlled gene expression and protein targeting in neurons and non-neuronal cells. Chembiochem. 2018;19(12):1334- 1340. DOI 10.1002/cbic.201700642.

39. Redchuk T.A., Omelina E.S., Chernov K.G., Verkhusha V.V. Near-infrared optogenetic pair for protein regulation and spectral mul-tiplexing. Nat. Chem. Biol. 2017;13(6):633-639. DOI 10.1038/ nchembio.2343.

40. Reynolds L., Ullman C., Moore M., Isalan M., West M.J., Clapham P., Klug A., Choo Y. Repression of the HIV-1 5' LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. Proc. Natl. Acad. Sci. USA. 2003;100(4):1615- 1620. DOI 10.1073/pnas.252770699.

41. Rivera V.M., Clackson T., Natesan S., Pollock R., Amara J.F., Kee¬nan T., Magari S.R., Phillips T., Courage N.L., Cerasoli F., Jr., Holt D.A., Gilman M. A humanized system for pharmacologic control of gene expression. Nat. Med. 1996;2(9):1028-1032.

42. Ryu M.H., Gomelsky M. Near-infrared light responsive synthetic c-di- GMP module for optogenetic applications. ACS Synth. Biol. 2014; 3(11):802-810. DOI 10.1021/sb400182x.

43. Shao J., Wang M., Yu G., Zhu S., Yu Y., Heng B.C., Wu J., Ye H. Syn¬thetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proc. Natl. Acad. Sci. USA. 2018;115(29):E6722-E6730. DOI 10.1073/pnas.1802448115.

44. Sternberg S.H., Redding S., Jinek M., Greene E.C., Doudna J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014;507(7490):62-67. DOI 10.1038/nature13011.

45. Wang X., Chen X., Yang Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods. 2012;9(3): 266-269. DOI 10.1038/nmeth.1892.

46. Yazawa M., Sadaghiani A.M., Hsueh B., Dolmetsch R.E. Induction of protein-protein interactions in live cells using light. Nat. Biotechnol. 2009;27(10):941-945. DOI 10.1038/nbt.1569.

47. Zhang F., Cong L., Lodato S., Kosuri S., Church G.M., Arlotta P. Efficient construction of sequence-specific TAL effectors for modu¬lating mammalian transcription. Nat. Biotechnol. 2011;29(2):149- 153. DOI 10.1038/nbt.1775.


Review

Views: 1326


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)