Preview

Vavilov Journal of Genetics and Breeding

Advanced search

A meiotic mystery in experimental hybrids of the eastern mole vole (Ellobius tancrei, Mammalia, Rodentia)

https://doi.org/10.18699/VJ19.488

Abstract

Chromosomal rearrangements can lead to the formation of new stable karyotypes, nevertheless changing the architectonics of the nucleus. The differences in locations might promote Robertsonian (Rb) translocations and encourage meiotic drive in favour of changed chromosomes or against them. We hypothesized that hybridization and meiotic drive may produce new chromosomal forms in Ellobius tancrei. We crossed two forms with 2n = 50, and two pairs of different Rb metacentrics with partial (monobrachial) homology. In 10 years of inbred crossings (sister – brother), we got 9 generations of hybrids (262 litters, 578 animals). In the first hybrid generation, two trivalents, a tetravalent and 20 bivalents were revealed at meiotic prophase I. Hybrids of the first generation had lower fertility, fertility increased starting from the third generation. Instead of returning to parental karyotypes, starting from the second generation, hybrids obtained new chromosome sets, with different 2n (48, 49, 51, 52) and combinations of Rb metacentrics. Analysis of F4, F7 and F9 hybrids revealed that synapsis of homologous parts take place despite the presence of heterozygotes and monobrachial homology of Rb metacentrics. The most common meiotic disturbance was delayed synapsis, which resumed later compared to the homologous crossings. The late synaptic adjustments nevertheless provide a proper segregation of chromosomes and normal sets in the gametes. Therefore, some cells pass through meiosis successfully and promote viable gametes. We proved the hypothesis that origin of monobrachially homologous Rb translocations may lead to divergence in several generations, due to meiotic drive.

About the Authors

V. G. Tambovtseva
Koltzov Institute of Developmental Biology, RAS.
Russian Federation
Moscow.


S. N. Matveevsky
Vavilov Institute of General Genetics, RAS.
Russian Federation
Moscow.


A. A. Kashintsova
Vavilov Institute of General Genetics, RAS.
Russian Federation
Moscow.


A. V. Tretiakov
Vavilov Institute of General Genetics, RAS.
Russian Federation
Moscow.


O. L. Kolomiets
Vavilov Institute of General Genetics, RAS.
Russian Federation
Moscow.


I. Yu. Bakloushinskaya
Koltzov Institute of Developmental Biology, RAS.
Russian Federation
Moscow.


References

1. Baker R.J., Bickham J.W. Speciation by monobrachial centric fusions. Proc. Natl. Acad. Sci. USA. 1986;83:8245-8248. DOI 10.1073/pnas.83.21.8245.

2. Bakloushinskaya I., Matveevsky S. Unusual ways to lost Y chromo-some and survive with changed autosomes: a story of mole voles Ellobius (Mammalia, Rodentia). OBM Genetics. 2018;2(3). DOI 10.21926/obm.genet.1803023.

3. Bakloushinskaya I.Yu., Romanenko S.A., Graphodatsky A.S., Mat- veevsky S.N., Lyapunova E.A., Kolomiets O.L. The role of chromo¬some rearrangements in the evolution of mole voles of the genus Ellobius (Rodentia, Mammalia). Russ. J. Genetics. 2010;46:1143- 1145. DOI 10.1134/S1022795410090346.

4. Bakloushinskaya I., Romanenko S.A., Serdukova N.A., Grapho-datsky A.S., Lyapunova E.A. A new form of the mole vole Ellobius tancrei Blasius, 1884 (Mammalia, Rodentia) with the lowest chro¬mosome number. Comp. Cytogenet. 2013;7:163-169. DOI 10.3897/ CompCytogen.v7i2.5350.

5. Berrios S., Fernandez-Donoso R., Ayarza E. Synaptic configuration of quadrivalents and their association with the XY bivalent in sper¬matocytes of Robertsonian heterozygotes of Mus domesticus. Biol. Res. 2017;50(1):38. DOI 10.1186/s40659-017-0143-6.

6. Bogdanov Yu.F., Kolomiets O.L. Synaptonemal Complex - Indicator of the Dynamics of Meiosis and Chromosome Variation. Moscow: KMK Scientific Press, 2007. (in Russian)

7. Castiglia R., Capanna E. Contact zones between chromosomal races of Mus musculus domesticus. 2. Fertility and segregation in laboratory- reared and wild mice multiple heterozygous for Robertsonian rear¬rangements. Heredity. 2000;85:147-157. DOI 10.1046/j.1365-2540. 2000.00743.x.

8. Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2001;2(4):292- 301. DOI10.1038/35066075.

9. de la Fuente R., Parra M.T., Viera A., Calvente A., Gomez R., Suja J.A., Rufas J.S., Page J. Meiotic pairing and segregation of achiasmate sex chromosomes in eutherian mammals: the role of SYCP3 protein. PLoS Genet. 2007;3(11):e198. DOI 10.1371/journal.pgen.0030198.

10. de Villena F.P., Sapienza C. Female meiosis drives karyotypic evolution in mammals. Genetics. 2001;159:1179-1189.

11. Dobigny G., Britton-Davidian J., Robinson T.J. Chromosomal poly-morphism in mammals: an evolutionary perspective. Biol. Rev. 2017;92(1):1-21. DOI 10.1111/brv.12213.

12. Faria R., Navarro A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol. Evol. 2010;25:660-669. DOI 10.1016/j.tree.2010.07.008.

13. Ford C.E., Hamerton J.L. A colchicine, hypotonic citrate, squash se-quence for mammalian chromosomes. Stain Techn. 1956;31:247- 251. DOI 10.3109/10520295609113814.

14. Graphodatsky A.S., Radjabli S.I. Chromosomes of Farm and Labora-tory Mammals. Atlas. Novosibirsk: Nauka Publ., 1988. (in Russian)

15. Graphodatsky A.S., Stanyon R., Trifonov V.A. The genome diversity and karyotype evolution of mammals. Mol. Cytogenet. 2011;4:22. DOI 10.1186/1755-8166-4-22.

16. King M. Species Evolution. The Role of Chromosome Change. Cam-bridge: Univ. Press, 1993.

17. Kolomiets O.L., Matveevsky S.N., Bakloushinskaya I.Yu. Sexual di-morphism in prophase I of meiosis in mole vole (Ellobius talpinus Pallas) with isomorphic (XX) chromosomes in males and females. Comp. Cytogenet. 2010;4:55-66. DOI 10.3897/compcytogen.v4i1.25.

18. Lindholm A.K., Dyer K.A., Firman R.C., Fishman L., Forstmeier W., Holman L., Johannesson H., Knief U., Kokko H., Larracuente A.M., Manser A., Montchamp-Moreau C., Petrosyan V.G., Pomiankow- ski A., Presgraves D.C., Safronova L.D., Sutter A., Unckless R.L., Verspoor R.L., Wedell N., Wilkinson G.S., Price T.A.R. The eco¬logy and evolutionary dynamics of meiotic drive. Trends Ecol. Evol. 2016;31:315-326. DOI 10.1016/j.tree.2016.02.001.

19. Lyapunova E.A., Bakloushinskaya I.Y., Saidov A.S., Saidov K.K. Dynamics of chromosome variation in mole voles Ellobius tan- crei (Mammalia, Rodentia) in Pamiro-Alay in the period from 1982 to 2008. Russ J. Genetics. 2010;46:566-571. DOI 10.1134/ S1022795410050091.

20. Lyapunova E.A., Ivnitskii S.B., Korablev V.P., Yanina I.Yu. Complete Robertsonian fan of the chromosomal forms in the mole-vole su¬perspecies Ellobius talpinus. Doklady Akademii Nauk SSSR = Pro¬ceedings of the Academy of Sciences of the USSR. 1984;274:1209- 1213. (in Russian)

21. Matveevsky S., Bakloushinskaya I., Kolomiets O. Unique sex chro-mosome systems in Ellobius: How do male XX chromosomes re-combine and undergo pachytene chromatin inactivation? Sci. Rep. 2016;6,29949. DOI 10.1038/srep29949.

22. Matveevsky S., Bakloushinskaya I., Tambovtseva V, Romanenko S., Kolomiets O. Analysis of meiotic chromosome structure and be-havior in Robertsonian heterozygotes of Ellobius tancrei: a case of monobrachial homology. Comp. Cytogenet. 2015;9(4):691-706. DOI 10.3897/CompCytogen.v9i4.5674.

23. Matveevsky S.N., Kolomiets O.L. Synaptonemal complex configura-tions in Robertsonian heterozygotes. Tsitologia. 2016;58(4):309-314.

24. Matveevsky S., Kolomiets O., Bogdanov A., Hakhverdyan M., Bak-loushinskaya I. Chromosomal evolution in mole voles Ellobius (Cri- cetidae, Rodentia): Bizarre sex chromosomes, variable autosomes and meiosis. Genes. 2017;8(11):306. DOI 10.3390/genes8110306.

25. Nunes A.C., Catalan J., Lopez J., da Graja Ramalhinho M., da Luz Mathias M., Britton-Davidian J. Fertility assessment in hybrids be¬tween monobrachially homologous Rb races of the house mouse from the island of Madeira: implications for modes of chromosomal evolution. Heredity. 2011;106:348-356. DOI 10.1038/hdy.2010.74.

26. Peters A.H., Plug A.W., van Vugt M.J., De Boer P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res. 1997;5(1):66-68.

27. Potter S., Bragg J.G., Blom M.P., Deakin J.E., Kirkpatrick M., El- dridge M.D., Moritz C. Chromosomal speciation in the genomics era: disentangling phylogenetic evolution of Rock-wallabies. Front. Genet. 2017;8:10. DOI 10.3389/fgene.2017.00010.

28. Qumsiyeh M.B. Structure and function of the nucleus: anatomy and physiology of chromatin. Cell. Mol. Life Sci. 1999;55:1129-1140.

29. Ratomponirina C., Brun B., Rumpler Y. Synaptonemal complexes in Robertsonian translocation heterozygous in lemurs. In: Brand- ham P.E. (Ed). Kew Chromosome Conference 3. London: HMSO, 1988;65-73.

30. Romanenko S.A., Serdyukova N.A., Perelman P.L., Trifonov V.A., Golenishchev F.N., Bulatova N.S., Stanyon R., Graphodatsky A.S. Multiple intrasyntenic rearrangements and rapid speciation in voles. Sci. Rep. 2018;8:14980. DOI 10.1038/s41598-018-33300-6.

31. Sandler L., Novitski E. Meiotic drive as an evolutionary force. Am. Nat. 1957;91:105-110.

32. Seabright M. A rapid banding technique for human chromosomes. Lancet. 1971;2:971-972. DOI 10.1016/S0140-6736(71)90287-X.

33. Searle J.B., Wojcik J.M. Chromosomal evolution: the case of Sorex araneus In: Wojcik J.M., Wolsan M. (Eds.). Evolution of Shrews. Bialowieza: Mammal Research Institute PAS, 1998;219-268.

34. Shapiro J.A. Genome organization and reorganization in evolution: formatting for computation and function. Ann. N. Y. Acad. Sci. 2002;981:111-134. DOI 10.1111/j.1749-6632.2002.tb04915.x.

35. Vorontsov N.N., Lyapunova E.A., Borissov Y.M., Dovgal V.E. Variabi¬lity of sex chromosomes in mammals. Genetica. 1980;52/53:361-372


Review

Views: 680


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)