Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The effect of differences in the third domain of the glycoprotein E of tick-borne encephalitis virus of the Far Eastern, Siberian and European subtypes on the binding of recombinant D3 proteins with a chimeric antibody

https://doi.org/10.18699/VJ19.490

Abstract

Currently, a therapeutic drug based on recombinant antibodies for the prevention and treatment of tick-borne encephalitis virus (TBEV) is developed in ICBFM SB RAS, and the chimeric antibody ch14D5 is considered as one of the key components of this drug. It was previously shown that this antibody is directed to the domain D3 of the glycoprotein E of TBEV. It was previously shown that this antibody is able to protect mice from the European subtype of TBEV, strain “Absettarov”, and the presence of virus-neutralizing activity against the Far Eastern subtype of TBEV, strain 205 was also shown for this antibody. However, it remains unclear whether this antibody exhibits selectivity for different subtypes of TBEV. The aim of this study was to investigate the effect of amino acid sequence differences of recombinant D3 domains derived from the glycoprotein E of TBEV of the Far Eastern, Siberian and European subtypes on the binding of the protective antibody ch14D5 to these proteins. Using Western blot analysis and surface plasmon resonance, it was shown that ch14D5 antibody has the highest affinity (KD= 1.7±0.5 nM) for the D3 domain of the TBEV of the “Sofjin-Ru” strain belonging to the Far Eastern subtype of the virus. At the same time, the affinity of ch14D5 antibody for similar D3 proteins derived from “Zausaev”, “1528-99” and “Absettarov” strains of the Siberian and European subtypes of TBEV was noticeably lower (KD= 25±4, 300±50, 250±50 nM, respectively). In addition, information about the spatial arrangement of amino acid residues that are different for the studied recombinant proteins indicates that the epitope recognized by the ch14D5 antibody is in close proximity to the lateral ridge of D3 domain of E glycoprotein.

About the Authors

I. K. Baykov
Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS
Russian Federation


A. L. Matveev
Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS; Novosibirsk State University
Russian Federation


L. A. Emelianova
Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS; Novosibirsk State University
Russian Federation


G. B. Kaverina
Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS
Russian Federation


S. E. Tkachev
Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS
Russian Federation


N. V. Tikunova
Institute of Сhemical Biology аnd Fundamental Medicine, SB RAS; Novosibirsk State University
Russian Federation


References

1. Байков И.К., Емельянова Л.А., Соколова Л.М., Карелина Е.М., Матвеев А.Л., Бабкин И.В., Хлусевич Я.А., Подгорный В.Ф., Тикунова Н.В. Анализ доменной специфичности протективного химерного антитела ch14D5a против гликопротеина Е вируса клещевого энцефалита. Вавиловский журнал генетики и селекции. 2018;22(4):459-467. [Baykov I.K., Emelyanova L.A., Sokolova L.M., Karelina E.M., Matveev A.L., Babkin I.V., Khlusevich Ya.A., Podgornyy V.F., Tikunova N.V. Analysis of domain specificity of the protective chimeric antibody ch14D5a against glycoprotein E of tick-borne encephalitis virus. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(4):459-467. DOI 10.18699/ VJ18.383 (in Russian)]

2. Baykov I.K., Matveev A.L., Stronin O.V., Ryzhikov A.B., Matveev L.E., Kasakin M.F., Richter V.A., Tikunova N.V. A protective chimeric antibody to tick-borne encephalitis virus. Vaccine. 2014; 17;32(29):3589-3594. DOI 10.1016/j.vaccine.2014.05.012.

3. Dai L., Song J., Lu X., Deng Y.Q., Musyoki A.M., Cheng H., Zhang Y., Yuan Y., Song H., Haywood J., Xiao H., Yan J., Shi Y., Qin C.F., Qi J., Gao G.F. Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe. 2016;19(5):696-704. DOI 10.1016/j.chom.2016.04.013.

4. Dowd K.A., Pierson T.C. Antibody-mediated neutralization of flaviviruses: a reductionist view. Virology. 2011;411(2):306-315. DOI 10.1016/j.virol.2010.12.020.

5. Füzik T., Formanová P., Růžek D., Yoshii K., Niedrig M., Plevka P. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat. Commun. 2018;9(1):436. DOI 10.1038/ s41467-018-02882-0.

6. Halstead S.B. Dengue antibody-dependent enhancement: knowns and unknowns. Microbiol. Spectr. 2014;2(6):249-271. DOI 10.1128/ microbiolspec.AID-0022-2014.

7. Haslwanter D., Blaas D., Heinz F.X., Stiasny K. A novel mechanism of antibody-mediated enhancement of flavivirus infection. PLoS Pathog. 2017;13(9):e1006643. DOI 10.1371/journal.ppat.1006643.

8. Heinz F.X., Stiasny K. Flaviviruses and their antigenic structure. J. Clin. Virol. 2012;55(4):289-295. DOI 10.1016/j.jcv.2012.08.024.

9. Julander J.G., Thibodeaux B.A., Morrey J.D., Roehrig J.T., Blair C.D. Humanized monoclonal antibody 2C9-cIgG has enhanced efficacy for yellow fever prophylaxis and therapy in an immunocompetent animal model. Antiviral Res. 2014;103:32-38. DOI 10.1016/j.antiviral. 2013.12.011.

10. Katzelnick L.C., Gresh L., Halloran M.E., Mercado J.C., Kuan G., Gordon A., Balmaseda A., Harris E. Antibody-dependent enhancement of severe dengue disease in humans. Science. 2017;358(6365):929- 932. DOI 10.1126/science.aan6836.

11. Lai H., Engle M., Fuchs A., Keller T., Johnson S., Gorlatov S., Diamond M.S., Chen Q. Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proc. Natl. Acad Sci. USA. 2010;107(6):2419-2424. DOI 10.1073/pnas.0914503107.

12. Lambour J., Naranjo-Gomez M., Piechaczyk M., Pelegrin M. Converting monoclonal antibody-based immunotherapies from passive to active: bringing immune complexes into play. Emerg. Microbes Infect. 2016;5(8):e92. DOI 10.1038/emi.2016.97.

13. Levanov L.N., Matveev L.E., Goncharova E.P., Lebedev L.R., RyzhikovA.B., Yun T.E., Batanova T.A., Shvalov A.N., Baykov I.K., Shingarova L.N., Kirpichnikov M.P., Tikunova N.V. Chimeric antibodies against tick-borne encephalitis virus. Vaccine. 2010;28(32):5265- 5271. DOI 10.1016/j.vaccine.2010.05.060.

14. Oliphant T., Engle M., Nybakken G.E., Doane C., Johnson S., Huang L., Gorlatov S., Mehlhop E., Marri A., Chung K.M., Ebel G.D., Kramer L.D., Fremont D.H., Diamond M.S. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat. Med. 2005;11(5):522-530. Roehrig J.T. Antigenic structure of flavivirus proteins. Adv. Virus Res. 2003;59:141-175.

15. Salazar G., Zhang N., Fu T.M., An Z. Antibody therapies for the prevention and treatment of viral infections. NPJ Vaccines. 2017;2:19. DOI 10.1038/s41541-017-0019-3.

16. Sánchez M.D., Pierson T.C., McAllister D., Hanna S.L., Puffer B.A., Valentine L.E., Murtadha M.M., Hoxie J.A., Doms R.W. Characterization of neutralizing antibodies to West Nile virus. Virology. 2005;336(1):70-82.

17. Sautto G., Mancini N., Gorini G., Clementi M., Burioni R. Possible future monoclonal antibody (mAb)-based therapy against arbovirus infections. Biomed. Res. Int. 2013;2013:838491. DOI 10.1155/ 2013/838491.

18. Tsekhanovskaya N.A., Matveev L.E., Rubin S.G., Karavanov A.S., Pressman E.K. Epitope analysis of tick-borne encephalitis (TBE) complex viruses using monoclonal antibodies to envelope glycoprotein of TBE virus (persulcatus subtype). Virus Res. 1993;30(1):1-16.

19. Zidane N., Dussart P., Bremand L., Villani M.E., Bedouelle H. Thermodynamic stability of domain III from the envelope protein of flaviviruses and its improvement by molecular design. Protein Eng. Des. Sel. 2013;26(6):389-399. DOI 10.1093/protein/gzt010.


Review

Views: 751


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)