Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Популяционная генетика полиглутаминовых спиноцеребеллярных атаксий

https://doi.org/10.18699/VJ19.516

Аннотация

Наследственные заболевания нервной системы – одна из наиболее актуальных проблем медицины XXI века. Особо выделяются те, которые доминируют в этой группе. К таким заболеваниям, безусловно, можно отнести полиглутаминовые спиноцеребеллярные атаксии (СЦА), имеющие в своей основе молекулярные механизмы быстро прогрессирующей экспансии среди различных групп населения нашей планеты. Это СЦА1, 2, 3, 6, 7 и 17, фенотипически объединенные в одну группу по принципу развития мозжечковой атаксии вследствие специфических генетических причин. Субстратом данных генетических заболеваний является ЦАГ тринуклеотидная последовательность (цитозин-аденин-гуанин), которая имеет тенденцию к увеличению при передаче генома последующим поколениям. Поэтому характерная особенность этих заболеваний – не только количественное увеличение больных, но и качественное изменение течения их неврологической симптоматики. Все это отражается в структуре заболеваемости полиглутаминовыми СЦА как на глобальном общемировом уровне, так и на уровне отдельных групп населения конкретных регионов. Однако большинство работ, посвященных популяционной генетике полиглутаминовых СЦА, ограничиваются количественными показателями конкретной нозологии на определенной территории, тогда как история возникновения и принципы распространения полиглутаминовых СЦА на сегодняшний день исследованы недостаточно хорошо. Это не позволяет делать долгосрочные прогнозы относительно динамики в последующих поколениях и управлять мутагенным процессом. В настоящей работе представлен детальный анализ популяционной генетики полиглутаминовых СЦА, выведены общие генетические и частные закономерности их развития и особенности популяционной динамики в мире и в Российской Федерации. Обозначены проблемы в исследовании и выявлении таких заболеваний. Для лучшего понимания необходимо охватить широкий пласт популяций Африки, Азии и Южной Америки, что будет возможно при развитии новых методов молекулярной генетики. Такой подход к исследованию полиглутаминовых СЦА позволяет обозначить их место в контексте генетических заболеваний головного мозга и определить особенности распространения и методов генетической профилактики.

Об авторах

А. Н. Шуваев
Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого Министерства здравоохранения Российской Федерации, НИИ молекулярной медицины и патобиохимии
Россия
Красноярск


О. С. Белозор
Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого Министерства здравоохранения Российской Федерации, НИИ молекулярной медицины и патобиохимии
Россия
Красноярск


М. В. Смольникова
Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого Министерства здравоохранения Российской Федерации, НИИ молекулярной медицины и патобиохимии; Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук», НИИ медицинских проблем Севера
Россия
Красноярск


Д. А. Яковлева
Сибирский федеральный университет
Россия
Красноярск


Андр. Н. Шуваев
Сибирский федеральный университет
Россия


О. М. Казанцева
Красноярский краевой медико-генетический центр
Россия
Красноярск


Е. А. Пожиленкова
Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого Министерства здравоохранения Российской Федерации, НИИ молекулярной медицины и патобиохимии
Россия
Красноярск


О. И. Можей
Балтийский федеральный университет им. И. Канта
Россия
Калининград


С. Каспаров
Балтийский федеральный университет им. И. Канта; Университет Бристоля
Великобритания
Калининград


Список литературы

1. Alendar A., Euljkovic B., Savic D., Djarmati A., Keckarevic M., Ristic A., Dragasevic N., Kosic V., Romac S. Spinocerebellar ataxia type 17 in the Yugoslav population. Acta Neurol. Scand. 2004;109:185-187. https://www.ncbi.nlm.nih.gov/pubmed/14763955.

2. Babovic-Vuksanovic D., Snow K., Patterson M.C., Michels V.V. Spinocerebellar ataxia type 2 (SCA 2) in an infant with extreme CAG repeat expansion. Am. J. Med. Genet. 1998;79:383-387. https://www.ncbi.nlm.nih.gov/pubmed/9779806.

3. Bauer P.O., Zumrova A., Matoska V., Marikova T., Krilova S., Boday A., Singh B., Goetz P. Absence of spinocerebellar ataxia type 3/ Machado-Joseph disease within ataxic patients in the Czech population. Eur. J. Neurol. 2005;12(11):851-857. https://www.ncbi.nlm. nih.gov/pubmed/16241973.

4. Bettencourt C., Lima M. Machado-Joseph Disease: from first descriptions to new perspectives. Orphanet J. Rare Dis. 2011;6:35. DOI 10.1186/1750-1172-6-35. https://www.ncbi.nlm.nih.gov/pubmed/21635785.

5. Bird T.D. Hereditary Ataxia Overview. 1998. Oct. 28 [Updated 2018 Sep. 27]. Eds. M.P. Adam, H.H. Ardinger, R.A. Pagon, S.E. Wallace, L.J.H. Bean, K. Stephens, A. Amemiya. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1138/.

6. Brais B., Bouchard J.P., Xie Y.G., Rochefort D.L., Chretien N., Tome F.M., Lafreniere R.G., Rommens J.M., Uyama E., Nohira O., Blumen S., Korczyn A.D., Heutink P., Mathieu J., Duranceau A., Codere F., Fardeau M., Rouleau G.A., Korcyn A.D. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat. Genet. 1998;18:164-167. https://www.ncbi.nlm.nih.gov/pubmed/9462747.

7. Brook J.D., McCurrach M.E., Harley H.G., Buckler A.J., Church D., Aburatani H., Hunter K., Stanton V.P., Thirion J.P., Hudson T., Sohn R., Zemelman B., Snell R.G., Rundle S.A., Crow S., Davies J., Shelbourne P., Buxton J., Jones C., Juvonen V., Johnson K., Harper P.S., Shaw D.J., Housman D.E. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′-end of a transcript encoding a protein kinase family member. Cell. 1992;68(4):799-780. https://www.ncbi.nlm.nih.gov/pubmed/1310900.

8. Campuzano V., Montermini L., Moltò M.D., Pianese L., Cossée M., Cavalcanti F., Monros E., Rodius F., Duclos F., Monticelli A., Zara F., Cañizares J., Koutnikova H., Bidichandani S.I., Gellera C., Brice A., Trouillas P., De Michele G., Filla A., De Frutos R., Palau F., Patel P.I., Di Donato S., Mandel J.L., Cocozza S., Koenig M., Pandolfo M. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):14231427. https://www.ncbi.nlm.nih.gov/pubmed/8596916.

9. Cancel G., Dürr A., Didierjean O., Imbert G., Bürk K., Lezin A., Belal S., Benomar A., Abada-Bendib M., Vial C., Guimarães J., Chneiweiss H., Stevanin G., Yvert G., Abbas N., Saudou F., Lebre A.S., Yahyaoui M., Hentati F., Vernant J.C., Klockgether T., Mandel J.L., Agid Y., Brice A. Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum. Mol. Genet. 1997;6(5):709-715. https://www.ncbi.nlm.nih.gov/pubmed/9158145.

10. Choudhry S., Mukerji M., Srivastava A.K., Jain S., Brahmachari S.K. CAG repeat instability at SCA2 locus: anchoring CAA interruptions and linked single nucleotide polymorphisms. Hum. Mol. Genet. 2001;10(21):2437-2446. https://www.ncbi.nlm.nih.gov/pubmed/11689490.

11. Craig K., Keers S.M., Walls T.J., Curtis A., Chinnery P.F. Minimum prevalence of spinocerebellar ataxia 17 in the north east of England. J. Neurol. Sci. 2005;239:105-109. DOI 10.1016/j.jns.2005.08.009. https://www.ncbi.nlm.nih.gov/pubmed/16223509.

12. Craig K., Takiyama Y., Soong B.W., Jardim L.B., Saraiva-Pereira M.L., Lythgow K., Morino H., Maruyama H., Kawakami H., Chinnery P.F. Pathogenic expansions of the SCA6 locus are associated with a common CACNA1A haplotype across the globe: founder effect or predisposing chromosome? Eur. J. Hum. Genet. 2008;16:841-847. DOI 10.1038/ejhg.2008.20. https://www.ncbi.nlm.nih.gov/pubmed/18285829.

13. David G., Abbas N., Stevanin G., Durr A., Yvert G., Cancel G., Weber C., Imbert G., Saudou F., Antoniou E., Drabkin H., Gemmill R., Giunti P., Benomar A., Wood N., Ruberg M., Agid Y., Mandel J.L., Brice A. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat. Genet. 1997;17:65-70. https://www.ncbi.nlm. nih.gov/pubmed/9288099.

14. De Michele G., Maltecca F., Carella M., Volpe G., Orio M., De Falco A., Gombia S., Servadio A., Casari G., Filla A., Bruni A. Dementia, ataxia, extrapyramidal features, and epilepsy: phenotype spectrum in two Italian families with spinocerebellar ataxia type 17. Neurol. Sci. 2003;24:166-167. DOI 10.1007/s10072-003-0112-4. https://www.ncbi.nlm.nih.gov/pubmed/14598069.

15. Dedov I.I., Kalinchenko N.Y., Semicheva T.V., Tyulpakov A.N., Peterkova V.A., Prasolov V.S., Rubtsov P.M., Sverdlova P.S., Kuznetsova E.S., Bakanova T.D. Molecular analysis of CYP21 gene in patients with inborn dysfunction of epinefral glands with 21-hydroxylase deficite. Problems of Endocrinology. 2004;4:3-6. http://www. fesmu.ru/elib/Article.aspx?id=112879. (in Russian).

16. Dichgans M., Schöls L., Herzog J., Stevanin G., Weirich-Schwaiger H., Rouleau G., Bürk K., Klockgether T., Zühlke C., Laccone F., Riess O., Gasser T. Spinocerebellar ataxia type 6: evidence for a strong founder effect among German families. Neurology. 1999;52(4):849-851. https://www.ncbi.nlm.nih.gov/pubmed/10078738.

17. Didierjean O., Cancel G., Stevanin G., Dürr A., Bürk K., Benomar A., Lezin A., Belal S., Abada-Bendid M., Klockgether T., Brice A. Linkage disequilibrium at the SCA2 locus. J. Med. Genet. 1999;36:415-417. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1734371/.

18. Dunnen D. Trinucleotide repeat disorders. Handb. Clin. Neurol. 2017; 145:383-391. DOI 10.1016/B978-0-12-802395-2.00027-4. https://www.ncbi.nlm.nih.gov/pubmed/28987184.

19. Filla A., Mariotti C., Caruso G., Coppola G., Cocozza S., Castaldo I., Calabrese O., Salvatore E., De Michele G., Riggio M.C., Pareyson D., Gellera C., Di Donato S. Relative frequencies of CAG expansions in spinocerebellar ataxia and dentatorubropallidoluysian atrophy in 116 Italian families. Eur. Neurol. 2000;44:31-36. https:// www.ncbi.nlm.nih.gov/pubmed/10894992.

20. Gardian G., Browne S.E., Choi D.K., Klivenyi P., Gregorio J., Kubilus J.K., Ryu H., Langley B., Ratan R.R., Ferrante R.J., Beal M.F. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem. 2005; 280(1):556-563. DOI 10.1074/jbc.M410210200. http://www.jbc.org/content/280/1/556.long.

21. Gaspar C., Lopes-Cendes I., Hayes S., Goto J., Arvidsson K., Dias A., Silveira I., Maciel P., Coutinho P., Lima M., Zhou Y.X., Soong B.W., Watanabe M., Giunti P., Stevanin G., Riess O., Sasaki H., Hsieh M., Nicholson G.A., Brunt E., Higgins J.J., Lauritzen M., Tranebjaerg L., Volpini V., Wood N., Ranum L., Tsuji S., Brice A., Sequeiros J., Rouleau G.A. Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study. Am. J. Hum. Genet. 2001;68:523-528. DOI 10.1086/318184. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1235286/.

22. Gedeon A.K., Meinanen M., Ades L.C., Kaariainen H., Gecz J., Baker E., Sutherland G.R., Mulley J.C. Overlapping submicroscopic deletions in Xq28 in two unrelated boys with developmental disorders: Identification of a gene near FRAXE. Am. J. Hum. Genet. 1995;56:907-914. https://www.ncbi.nlm.nih.gov/pubmed/7536393.

23. Geschwind D.H., Perlman S., Figueroa C.P., Treiman L.J., Pulst S.M. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am. J. Hum. Genet. 1997a;60:842-850. https://www.ncbi.nlm.nih.gov/pubmed/9106530.

24. Geschwind D.H., Perlman S., Figueroa K.P., Karrim J., Baloh R.W., Pulst S.M. Spinocerebellar ataxia type 6. Frequency of the mutation and genotype-phenotype correlations. Neurology. 1997b;49:12471251. https://www.ncbi.nlm.nih.gov/pubmed/9371902.

25. Gouriev I.P. Genetic Archeological perspective on the origin of Yakuts. Russ. J. Genet. 2004;40(4):450-453. https://link.springer.com/article/10.1023%2FB%3ARUGE.0000024984.49084.a8.

26. Greenberg J., Solomon G.A., Vorster A.A., Heckmann J., Bryer A. Origin of the SCA7 gene mutation in South Africa: implications for molecular diagnostics. Clin. Genet. 2006;70(5):415-417. DOI 10.1111/j.1399-0004.2006.00680.x

27. Ikeuchi T., Takano H., Koide R., Horikawa Y., Honma Y., Onishi Y., Igarashi S., Tanaka H., Nakao N., Sahashi K., Tsukagoshi H., Inoue K., Takahashi H., Tsuji S. Spinocerebellar ataxia type 6: CAG repeat expansion in alpha1A voltage-dependent calcium channel gene and clinical variations in Japanese population. Ann. Neurol. 1997;42:879-884. https://www.ncbi.nlm.nih.gov/pubmed/9403480.

28. Jayadev S., Bird T.D. Hereditary ataxias: overview. Genet. Med. 2013; 15(9):673-683. DOI 10.1038/gim.2013.28. https://www.nature.com/articles/gim201328.

29. Jayadev S., Michelson S., Lipe H., Bird T. Cambodian founder effect for spinocerebellar ataxia type 3 (Machado-Joseph disease). J. Neurol. Sci. 2006;250:110-113. DOI 10.1016/j.jns.2006.08.006. https://www.ncbi.nlm.nih.gov/pubmed/17027034.

30. Jiang H., Tang B., Xia K., Zhou Y., Xu B., Zhao G., Li H., Shen L., Pan Q., Cai F. Spinocerebellar ataxia type 6 in Mainland China: molecular and clinical features in four families. J. Neurol. Sci. 2005; 236:25-29. https://www.ncbi.nlm.nih.gov/pubmed/15979648.

31. Jodice C., Frontali M., Persichetti F., Novelletto A., Pandolfo M., Spadaro M., Giunti P., Schinaia G., Lulli P., Malaspina P. The gene for spinal cerebellar ataxia 1 (SCA1) is flanked by two closely linked highly polymorphic microsatellite loci. Hum. Mol. Genet. 1993; 2(9):1383-1387.

32. Jonasson J., Juvonen V., Sistonen P., Ignatius J., Johansson D., Björck E.J., Wahlström J., Melberg A., Holmgren G., Forsgren L., Holmberg M. Evidence for a common spinocerebellar ataxia type 7 (SCA7) founder mutation in Scandinavia. Eur. J. Hum. Genet. 2000; 8(12):918-922. https://www.ncbi.nlm.nih.gov/pubmed/11175279.

33. Kawaguchi Y., Okamoto T., Taniwaki M., Aizawa M., Inoue M., Katayama S., Kawakami H., Nakamura S., Nishimura M., Akiguchi I., Kimura J., Narumiya S., Kakizuka A. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat. Genet. 1994;8:221-228. https://www.ncbi.nlm.nih.gov/pubmed/7874163.

34. Klyushnikov S.A., Abramicheva N.Y., Vetchinova A.S., Nuzhnyi E.L., Ershova M.V., Illarioshkin S.N. Genetic structure of autosomal dominant and autosomal recessive ataxies in Russian population. “Parkinson Disease and Movement Disorders”. Under red. of S.N. Illarioshkin, O.S. Levin. Moscow: Luxury Print, 2017;258-262. (in Russian)

35. Klyushnikov S.A., Illarioshkin S.N., Ivanova-Smolenskaya I.A. Molecular analysis of polyglutamine diseases in Russia. “Parkinson Disease and Movement Disorders”. Under red. of S.N. Illarioshkin, N.N. Yakhno. Moscow: OOO Dialog, 2008;69-75. (in Russian)

36. Klyushnikov S.A., Prikhodko D.A., Abramicheva N.Y., Ivanova E.O.,Illarioshkin S.N. Spinocerebellar ataxia type 17: first description in Russian population. Degenerative and Vascular Diseases of Neural System. 2016;37-39. (in Russian)

37. Koide R., Ikeuchi T., Onodera O., Tanaka H., Igarashi S., Endo K., Takahashi H., Kondo R., Ishikawa A., Hayashi T., Saito M., Tomoda A., Miike T., Naito H., Ikuta F., Tsuji S. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat. Genet. 1994;6:9-13. https://www.ncbi.nlm.nih.gov/pubmed/8136840.

38. Koide R., Kobayashi S., Shimohata T., Ikeuchi T., Maruyama M., Saito M., Yamada M., Takahashi H., Tsuji S. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum. Mol. Genet. 1999;8(11):2047-2053. https://www.ncbi.nlm.nih.gov/pubmed/10484774.

39. Kovtun I.V., Liu Y., Bjoras M., Klungland A., Wilson S.H., McMurray C.T. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature. 2007;447:447-452. DOI 10.1038/nature05778. https://www.ncbi.nlm.nih.gov/pubmed/17450122.

40. Kovtun I.V., McMurray C.T. Trinucleotide expansion in haploid germ cells by gap repair. Nat. Genet. 2001;27:407-411. DOI 10.1038/ 86906. https://www.ncbi.nlm.nih.gov/pubmed/11279522.

41. Kremer E., Pritchard M., Lynch M., Yu S., Holman K., Warren S.T., Schlessinger D., Sutherland G.R., Richards R.I. DNA instability at the fragile X maps to a trinucleotide repeat sequence p(CCG)n. Science. 1991;252:1711-1714. https://www.ncbi.nlm.nih.gov/pubmed/1675488.

42. Krysa W., Sulek A., Rakowicz M., Szirkowiec W., Zaremba J. High relative frequency of SCA1 in Poland reflecting a potential founder effect. Neurol. Sci. 2016;37(8):1319-1325. DOI 10.1007/s10072016-2594-x.

43. La Spada A.R., Wilson E.M., Lubahn D.B., Harding A.E., Fischbeck K.H. Androgen receptor gene mutations in X-linked spinal and bulbar atrophy. Nature. 1991;352:77-79. https://www.ncbi.nlm.nih.gov/pubmed/2062380.

44. Lalioti M.D., Scott H.S., Antonarakis S.E. What is expanded in progressive myoclonus epilepsy? Nat. Genet. 1997;17(1):17. DOI 10.1038/ ng0997-17. https://www.nature.com/articles/ng0997-17.

45. Lima M., Mayer F.M., Coutinho P., Abade A. Origins of a mutation: population genetics of Machado-Joseph disease in the Azores (Portugal). Hum. Biol. 1998;70(6):1011-1023. https://www.ncbi.nlm.nih.gov/pubmed/9825593.

46. Liquori C.L., Ricker K., Moseley M.L., Jacobsen J.F., Kress W., Naylor S.L., Day J.W., Ranum L.P. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science. 2001;293:864867. DOI 10.1126/science.1062125. https://www.ncbi.nlm.nih.gov/pubmed/11486088.

47. Lund A., Udd B., Juvonen V., Andersen P.M., Cederquist K., Davis M., Gellera C., Kölmel C., Ronnevi L.O., Sperfeld A.D., Sörensen S.A., Tranebjaerg L., Van Maldergem L., Watanabe M., Weber M., Yeung L., Savontaus M.L. Multiple founder effects in spinal and bulbar muscular atrophy (SBMA, Kennedy disease) around the world. Eur. J. Hum. Genet. 2001;9(6):431-436. DOI 10.1038/sj.ejhg.5200656. https://www.ncbi.nlm.nih.gov/pubmed/11436124.

48. Lund A., Udd B., Juvonen V., Andersen P.M., Cederquist K., Ronnevi L.O., Sistonen P., Sörensen S.A., Tranebjaerg L., Wallgren-Pettersson C., Savontaus M.L. Founder effect in spinal and bulbar muscular atrophy (SBMA) in Scandinavia. Eur. J. Hum. Genet. 2000;8: 631-636. DOI 10.1038/sj.ejhg.5200517. https://www.ncbi.nlm.nih.gov/pubmed/10951525.

49. Manto M.U. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4:2-6. DOI 10.1080/14734220510007914.

50. Martins S., Soong B.W., Wong V.C.N., Giunti P., Stevanin G., Ranum L.P.W., Sasaki H., Riess O., Tsuji S., Coutinho P., Amorim A., Sequeiros J., Nicholson G.A. Mutational origin of Machado-Joseph disease in the Australian Aboriginal communities of Groote Eylandt and Yirrkala. Arch. Neurol. 2012;69(6):746-751. DOI 10.1001/ archneurol.2011.2504. https://jamanetwork.com/journals/jamaneurology/fullarticle/10.1001/archneurol.2011.2504.

51. Maruyama H., Izumi Y., Morino H., Oda M., Toji H., Nakamura S., Kawakami H. Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: a study of 1,286 Japanese patients. Am. J. Med. Genet. 2002;114:578-583. DOI 10.1002/ajmg.10514. https://onlinelibrary.wiley.com/doi/full/ 10.1002/ajmg.10514.

52. Matilla T., Volpini V., Genis D., Rosell J., Corral J., Davalos A., Molins A., Estivill X. Presymptomatic analysis of spinocerebellar ataxia type 1 (SCA1) via the expansion of the SCA1 CAG-repeat in a large pedigree displaying anticipation and parental male bias. Hum. Mol. Genet. 1993;2:2123-2128. https://academic.oup.com/hmg/article-pdf/2/12/2123/1829263/2-12-2123.pdf.

53. Matsumura R., Futamura N., Fujimoto Y., Yanagimoto S., Horikawa H., Suzumura A., Takayanagi T. Spinocerebellar ataxia type 6. Molecular and clinical features of 35 Japanese patients including one homozygous for the CAG repeat expansion. Neurology. 1997;49:12381243. https://www.ncbi.nlm.nih.gov/pubmed/9371900.

54. Matsuyama Z., Kawakami H., Maruyama H., Izumi Y., Komure O., Udaka F., Kameyama M., Nishio T., Kuroda Y., Nishimura M., Nakamura S. Molecular features of the CAG repeats of spinocerebellar ataxia 6 (SCA6). Hum. Mol. Genet. 1997;6:1283-1287. https://www.ncbi.nlm.nih.gov/pubmed/9259274.

55. Mittal U., Sharma S., Chopra R., Dheeraj K., Pal P.K., Srivastava A.K., Mukerji M. Insights into the mutational history and prevalence of SCA1 in the Indian population through anchored polymorphisms. Hum. Genet. 2005;118:107-114. DOI 10.1007/s00439-005-0018-8.

56. https://link.springer.com/article/10.1007%2Fs00439-005-0018-8. Mizushima K., Watanabe M., Abe K., Aoki M., Itoyama Y., Shizuka M., Okamoto K., Shoji M. Analysis of spinocerebellar ataxia type 2 in Gunma Prefecture in Japan: CAG trinucleotide expansion and clinical characteristics. J. Neurol. Sci. 1998;156(2):180-185. DOI 10.1016/S0022-510X(98)00040-9.

57. Mori M., Adachi Y., Kusumi M., Nakashima K. Spinocerebellar ataxia type 6: founder effect in Western Japan. J. Neurol. Sci. 2001;185(1): 43-47. DOI 10.1016/S0022-510X(01)00453-1. https://www.sciencedirect.com/science/article/pii/S0022510X01004531?via%3Dihub.

58. O’Hearn E., Holmes S.E., Calvert P.C., Ross C.A., Margolis R.L. SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology. 2001;56:299-303. DOI 10.1212/WNL.56.3.299. http://n.neurology.org/content/56/3/ 299.long.

59. Osakovsky V.L., Shatunov A.Y., Goldfarb L.G., Platonov P.A. Estimation of mutant chromosome in SCA1 gene in Yakut population. Yakut Medical Journal. 2004;2(6):63. (in Russian)

60. Pearson C.E., Nichol Edamura K., Cleary J.D. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 2005;6:729-742. DOI 10.1038/nrg1689. https://www.nature.com/articles/nrg1689.

61. Platonov F.A., Tyryshkin K., Tikhonov D.G., Neustroyeva T.S., Sivtseva T.M., Yakovleva N.V., Nikolaev V.P., Sidorova O.G., Kononova S.K., Goldfarb L.G., Renwick N.M. Genetic fitness and selection intensity in a population affected with high-incidence spinocerebellar ataxia type 1. Neurogenetics. 2016;17:179-185. DOI 10.1007/ s10048-016-0481-5. https://link.springer.com/article/10.1007%2F s10048-016-0481-5.

62. Popova S.N., Slominsky P.A., Pocheshnova E.A., Balanovskaya E.V., Tarskaya L.A., Bebyakova N.A., Bets L.V., Ivanov V.P., Livshits L.A., Khusnutdinova E.K., Spitcyn V.A., Limborska S.A. Polymorphism of trinucleotide repeats in loci DM, DRPLA and SCA1 in East European populations. Eur. J. Hum. Genet. 2001;9:829-835.

63. Potaman V.N., Bissler J.J., Hashem V.I., Oussatcheva E.A., Lu L., Shlyakhtenko L.S., Lyubchenko Y.L., Matsuura T., Ashizawa T., Leffak M., Benham C.J., Sinden R.R. Unpaired structures in SCA10 (ATTCT)n.(AGAAT)n repeats. J. Mol. Biol. 2003;326:1095-1111. https://www.sciencedirect.com/science/article/pii/S0022283603000378?via%3Dihub.

64. Pujana M.A., Corral J., Gratacos M., Combarros O., Berciano J., Genis D., Banchs I., Estivill X., Volpini V. Spinocerebellar ataxias in Spanish patients: genetic analysis of familial and sporadic cases. The Ataxia Study Group. Hum. Genet. 1999;104:516-522. https://www.ncbi.nlm.nih.gov/pubmed/10453742.

65. Ramesar R.S., Bardien S., Beighton P., Bryer A. Expanded CAG repeats in spinocerebellar ataxia (SCA1) segregate with distinct haplotypes in South african families. Hum. Genet. 1997;100(1): 131-137.

66. Rengaraj R., Dhanaraj M., Arulmozhi T., Chattopadhyay B., Battacharyya N.P. High prevalence of spinocerebellar ataxia type 1 in an ethnic Tamil community in India. Neurol. India. 2005;53(3):308311. DOI 10.4103/0028-3886.16929. https://www.ncbi.nlm.nih.gov/pubmed/16230798.

67. Riess O., Laccone F.A., Gispert S., Schols L., Zuhlke C., Vieira-Saecker A.M., Herlt S., Wessel K., Epplen J.T., Weber B.H., Kreuz F., Chahrokh-Zadeh S., Meindl A., Lunkes A., Aguiar J., Macek M., Krebsova A., Macek M., Burk K., Tinschert S., Schreyer I., Pulst S.M., Auburger G. SCA2 trinucleotide expansion in German SCA patients. Neurogenetics. 1997;1:59-64. https://link.springer.com/content/pdf/10.1007/s100480050009.pdf.

68. Riess O., Schöls L., Bottger H., Nolte D., Vieira-Saecker A.M., Schimming C., Kreuz F., Macek M., Krebsova A., Macek M., SenKlockgether T., Zuhlke C., Laccone F.A. SCA6 is caused by moderate CAG expansion in the alpha1A-voltagedependent calcium channel gene. Hum. Mol. Genet. 1997;6:1289-1293. https://www.ncbi.nlm. nih.gov/pubmed/9259275.

69. Schöls L., Bauer P., Schmidt T., Schulte T., Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291-304. DOI 10.1016/S1474-4422(04)00737-9. https://www.sciencedirect.com/science/article/pii/S1474442204007379?via %3Dihub.

70. Schöls L., Krüger R., Amoiridis G., Przuntek H., Epplen J.T., Riess O. Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. J. Neurol. Neurosurg. Psychiatry. 1998;64:67-73. https://jnnp.bmj.com/content/64/1/67.long.

71. Sinha K., Worth P.F., Jha D.K., Sinha S., Stinton V.J., Davis M.B., Wood N.W., Sweeney M.G., Bhatia K.P. Autosomal dominant cerebellar ataxia: SCA2 is the most frequent mutation in eastern India. J. Neurol. Neurosurg. Psychiatry. 2004;75:448-452. DOI 10.1136/jnnp.2002.004895. https://jnnp.bmj.com/content/75/3/448.

72. Stevanin G., David G., Durr A., Giunti P., Benomar A., Abada-Bendib M., Lee M.S., Agid Y., Brice A. Multiple origins of the spinocerebellar ataxia 7 (SCA7) mutation revealed by linkage disequilibrium studies with closely flanking markers, including an intragenic polymorphism (G3145TG/A3145TG). Eur. J. Hum. Genet. 1999;7: 889-896. DOI 10.1038/sj.ejhg.5200392. https://www.nature.com/articles/5200392.

73. Stevanin G., Durr A., Brice A. Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur. J. Hum. Genet. 2000;8:4-18. DOI 10.1038/ sj.ejhg.5200403. https://www.nature.com/articles/5200403.

74. Stevanin G., Durr A., David G., Didierjean O., Cancel G., Rivaud S., Tourbah A., Warter J.M., Agid Y., Brice A. Clinical and molecular features of spinocerebellar ataxia type 6. Neurology. 1997;49:12431246. DOI 10.1212/WNL.49.5.1243. http://n.neurology.org/content/49/5/1243.

75. Storey E., du Sart D., Shaw J.H., Lorentzos P., Kelly L., McKinley Gardner R.J., Forrest S.M., Biros I., Nicholson G.A. Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am. J. Med. Genet. 2000; 95:351-357. DOI 10.1002/1096-8628(20001211)95:4<351::AID-AJMG10>3.0.CO;2-R. https://www.ncbi.nlm.nih.gov/pubmed/1118 6889.

76. van de Warrenburg B.P., Sinke R.J., Verschuuren-Bemelmans C.C., Scheffer H., Brunt E.R., Ippel P.F., Maat-Kievit J.A., Dooijes D., Notermans N.C., Lindhout D., Knoers N.V., Kremer H.P. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology. 2002;58(5):702-708. DOI 10.1212/WNL.58.5.702. http://n.neurology.org/content/58/5/702.long.

77. Verbeek D.S., Piersma S.J., Hennekam E.F., Ippel E.F., Pearson P.L., Sinke R.J. Haplotype study in Dutch SCA3 and SCA6 families: evidence for common founder mutations. Eur. J. Hum. Genet. 2004; 12:441-446. DOI 10.1038/sj.ejhg.5201167. https://www.nature.com/articles/5201167.

78. Verkerk A.J., Pieretti M., Sutcliffe J.S., Fu Y.H., Kuhl D.P., Pizzuti A., Reiner O., Richards S., Victoria M.F., Zhang F.P., Eussen B.E., van Ommen G.J., Blonden L.A., Riggins G.J., Chastain J.L., Kunst C.B., Galjaard H., Caskey C.T., Nelson D.L., Oostra B.A., Warren S.T. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell. 1991;65(5):905-914. DOI 10.1016/00928674(91)90397-H. https://www.sciencedirect.com/science/article/pii/009286749190397H?via %3Dihub.

79. Vincent J.B., Neves-Pereira M.L., Paterson A.D., Yamamoto E., Parikh S.V., Macciardi F., Gurling H.M., Potkin S.G., Pato C.N., Macedo A., Kovacs M., Davies M., Lieberman J.A., Meltzer H.Y., Petronis A., Kennedy J.L. An unstable trinucleotide-repeat region on chromosome 13 implicated in spinocerebellar ataxia: a common expansion locus. Am. J. Hum. Genet. 2000;66:819-829. DOI 10.1086/302803. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1288165/.

80. Wadia N.H., Pang J., Desai J., Mankodi A., Desai M., Chamberlain S. A clinicogenetic analysis of six Indian spinocerebellar ataxia (SCA2) pedigrees: The signifi of slow saccades in diagnosis. Brain. 1998;121:2341-2355. https://www.ncbi.nlm.nih.gov/pubmed/9874485.

81. Wakisaka A., Sasaki H., Takada A., Fukazawa T., Suzuki Y., Hamada T., Iwabuchi K., Tashiro K., Yoshiki T. Spinocerebellar ataxia 1 (SCA1) in the Japanese in Hokkaido may derive from a single common ancestry. J. Med. Genet. 1995;32:590-592. https://jmg.bmj.com/content/32/8/590.long.

82. Warren S.T. The expanding world of trinucleotide repeats. Science. 1996;271(5254):1374-1375. DOI 10.1126/science.271.5254.1374. http://science.sciencemag.org/content/271/5254/1374.long.

83. Xiang F., Almqvist E.W., Huq M., Lundin A., Hayden M.R., Edstrom L., Anvret M., Zhang Z. A Huntington disease-like neurodegenerative disorder maps to chromosome 20p. Am. J. Hum. Genet. 1998;63:1431-1438. DOI 10.1086/302093. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1377554/.

84. Zhou Y.X., Qiao W.H., Gu W.H., Xie H., Tang B.S., Zhou L.S., Yang B.X., Takiyama Y., Tsuji S., He H.Y., Deng C.X., Goldfarb L.G., Wang G.X. Spinocerebellar ataxia type 1 in China: molecular analysis and genotype-phenotype correlation in 5 families. Arch. Neurol. 2001;58(5):789-794. https://jamanetwork.com/journals/jamaneurology/fullarticle/vol/58/pg/789.

85. Zhuchenko O., Bailey J., Bonnen P., Ashizawa T., Stockton D.W., Amos C., Dobyns W.B., Subramony S.H., Zoghbi H.Y., Lee C.C. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat. Genet. 1997;15:62-69. DOI 10.1038/ng0197-62. https://www.nature.com/articles/ng0197-62.

86. Zoghbi H.Y., Orr H.T. Polyglutamine diseases: protein cleavage and aggregation. Curr. Opin. Neurobiol. 1999;9(5):566-570. DOI 10.1016/S0959-4388(99)00013-6. https://www.sciencedirect.com/science/article/pii/S0959438899000136?via%3Dihub.

87. Zühlke C., Dalski A., Schwinger E., Finckh U. Spinocerebellar ataxia type 17: Report of a family with reduced penetrance of an unstable Gln49 TBP allele, haplotype analysis supporting a founder effect for unstable alleles and comparative analysis of SCA17 genotypes. BMC Med. Genet. 2005;6:27. DOI 10.1186/1471-2350-6-27. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1177950/.

88. Zühlke C., Gehlken U., Hellenbroich Y., Schwinger E., Bürk K. Phenotypical variability of expanded alleles in the TATA-binding protein gene. Reduced penetrance in SCA17? J. Neurol. 2003;250:161-163. DOI 10.1007/s00415-003-0958-7. https://link.springer.com/article/10.1007%2Fs00415-003-0958-7.


Рецензия

Просмотров: 1207


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)