Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Перспективы маркер-ориентированной селекции томата Solanum lycopersicum L.

https://doi.org/10.18699/VJ19.522

Полный текст:

Аннотация

В обзоре представлена краткая характеристика одного из основных для Сибири объектов овощеводства – томата. Обобщены данные об основных направлениях селекции этой культуры, таких как устойчивость к различным патогенам, сроки созревания и хранения плодов, а также содержание в них биологически активных веществ (БАВ). Отдельная глава обзора посвящена использованию различных типов маркеров ДНК для построения детальных генетических карт указанного объекта, которые наряду с данными полногеномного секвенирования могут быть использованы для скрининга различных генов, отвечающих за селектируемые признаки. Большинство таких признаков, особенно специфическая устойчивость к тем или иным патогенам, перенесено в культурный томат путем скрещивания его с дикорастущими видами, поэтому особое внимание в статье уделено выявлению и маркированию генов устойчивости к целому ряду вирусных, грибных и бактериальных патогенов, распространенных в Западной Сибири и на прилегающих территориях. Другой важный аспект для селекции – содержание БАВ в плодах томата, включая каротиноиды, витамины, сахара, органические кислоты и др. За последнее время благодаря современным технологиям секвенирования, SNP-генотипирования, разработке новых биоинформатических подходов удалось установить генетические каскады, определяющие биохимический состав плодов томата; выделить ключевые гены, которые в перспективе могут быть использованы в маркер-ориентированной селекции по признакам питательной ценности. И наконец, обсуждаются генетические работы, посвященные весьма актуальной для селекции проблеме оптимального в тех или иных климатических условиях срока созревания плодов и их длительного хранения без потери качества.

Об авторе

А. Б. Щербань
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Список литературы

1. Acciarri N., Rotino G.L., Tamietti G., Valentino D., Voltattorni S., Sabatini E. Molecular markers for Ve1 and Ve2 Verticillium resistance genes from Italian tomato germplasm. Plant Breed. 2007;126:617-621. DOI 10.1111/j.1439-0523.2007.01398.x.

2. Aflitos S., Schijlen E,, de Jong H., de Ridder D., Smit S., Finkers R., Wang J., Zhang G., Li N., Mao L., Bakker F., Dirks R., Breit T., Gravendeel B., Huits H., Struss D., Swanson-Wagner R., van Leeuwen H., van Ham R.C., Fito L., Guignier L., Sevilla M., Ellul P., Ganko E., Kapur A., Reclus E., de Geus B., van de Geest H., Te Lintel Hekkert B., van Haarst J., Smits L., Koops A., Sanchez-Perez G., van Heusden A.W., Visser R., Quan Z., Min J., Liao L., Wang X., Wang G., Yue Z., Yang X., Xu N., Schranz E., Smets E., Vos R., Rauwerda J., Ursem R., Schuit C., Kerns M., van den Berg J., Vriezen W., Janssen A., Datema E., Jahrman T., Moquet F., Bonnet J., Peters S. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 2014;80:136148. DOI 10.1111/tpj.12616.

3. Arens P., Mansilla C., Deinum D., Cavellini L., Moretti A., Rolland S., van der Schoot H., Calvache D., Ponz F., Collonnier C., Mathis R., Smilde D., Caranta C., Vosman B. Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theor. Appl. Genet. 2010;120:655-664. DOI 10.1007/s00122009-1183-2.

4. Barillas A.C., Mejia L., Sanchez-Perez A., Maxwell D.P. CAPS and SCAR markers for detection of I-3 gene introgression for resistance to Fusarium oxysporium f. sp. lycopersici race 3. Rpt. Tomato Genet. Coop. 2008;58:11-17.

5. Black L.L., Wang T.C., Hanson P.M., Chen J.T. Late blight resistance in four wild tomato accessions: effectiveness in diverse locations and inheritance of resistance. Phytopathology. 1996;86:S24.

6. Bohn G.W., Scott D.H. A second gene for uniform unripe fruit color in the tomato. J. Hered. 1945;36(6):169-172.

7. Casals J., Pascual L., Cañizares J., Cebolla-Cornejo J., Casañas F., Nuez F. Genetic basis of long shelf life and variability into Penjar tomato. Genet. Resour. Crop Evol. 2012;59:219-229. DOI 10.1007/s10722-011-9677-6.

8. Chunwongse J., Chunwongse C., Black L., Hanson P. Molecular mapping of the Ph-3 gene for late blight resistance in tomato. J. Horticult. Sci. Biotechnol. 2002;77:281-286. DOI 10.1080/14620316.2002.11511493.

9. Coaker G.L., Francis D.M. Mapping, genetic effects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirsutum. Theor. Appl. Genet. 2004;108:1047-1055. DOI 10.1007/s00122-003-1531-6.

10. Cong B., Barrero L.S., Tanksley S.D. Regulatory change in YABBYlike transcription factor led to evolution of extreme fruit size during tomato domestication. Nat. Genet. 2008;40:800-804. DOI 10.1038/ng.144.

11. Dax E., Livneh O., Aliskevicius E., Edelbaum O., Kedar N., Gavish N., Milo J., Geffen F., Blumenthal A., Rabinowich H.D., Sela I. A SCAR marker linked to the ToMV resistance gene, Tm2(2), in tomato. Euphytica. 1998;101:73-77.

12. Foolad M.R., Panthee D.R. Marker-assisted selection in tomato breeding. Crit. Rev. Plant Sci. 2012;31(2):93-123. DOI 10.1080/07352689.2011.616057.

13. Ford N.A., Erdman J.W. Are lycopene metabolites metabolically active? Acta Biochim. Pol. 2012;59:1-4.

14. Fradin E.F., Zhang Z., Juarez Ayala J.C., Castroverde C.D., Nazar R.N., Robb J., Liu C.M., Thomma B.P. Genetic dissection of verticillium wilt resistance mediated by tomato Ve1. Plant Physiol. 2009;150: 320-332. DOI 10.1104/pp.109.136762.

15. Garg N., Cheema D.S., Pathak D. Heterosis breeding in tomato involving rin, nor and alc alleles: A review of literature. Adv. Hort. Sci. 2008;22(1):54-62.

16. Garland S., Sharman M., Persley D., McGrath D. The development of an improved PCR-based marker system for Sw-5, an important TSWV resistance gene of tomato. Aust. J. Agric. Res. 2005;56: 285-289.

17. Gorguet B., Schipper D., van Lammeren A., Visser R.G.F., van Heusden A.W. ps-2, the gene responsible for functional sterility in tomato, due to non-dehiscent anthers, is the result of a mutation in a novel polygalacturonase gene. Theor. Appl. Genet. 2009;118:1199-1209. DOI 10.1007/s00122-009-0974-9.

18. Grushetskaya Z.E., Lemesh V.A., Poliksenova V.D., Khotyleva L.V. Mapping of the Cf-6 tomato leaf mould resistance locus using SSR markers. Russ. J. Genet. 2007;43:1266-1270. DOI 10.1134/S1022795407110099.

19. Howe H.F., Smallwood J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 1982;13:201-228.

20. Huang Z., van der Knaap E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theor. Appl. Genet. 2011; 123(3):465-474. DOI 10.1007/s00122-011-1599-3.

21. Ignatova S.I. The role of tomato hereditary potential for resistance in the system of integrated protection in protected ground. Gavrish. 2001;6:18-20. (in Russian)

22. Kabelka E., Franchino B., Francis D.M. Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp michiganensis. Phytopathology. 2002;92:504-510. DOI 10.1094/PHYTO.2002.92.5.504.

23. Kawchuk L.M., Lynch D.R., Hachey J., Bains P.S., Kulcsar F. Identification of a codominant amplified polymorphic DNA marker linked to the verticillium wilt resistance gene in tomato. Theor. Appl. Genet. 1994;89:661-664.

24. Kuzѐmensky A.V. Studies of Mutant Forms of Tomato with Regard to Breeding. Kharkov, 2004. (in Russian)

25. Langella R., Ercolano M.R., Monti L.M., Frusciante L., Barone A. Molecular marker assisted transfer of resistance to TSWV in tomato elite lines. J. Horticult. Sci. Biotechnol. 2004;79:806-810. DOI 10.1080/14620316.2004.11511846.

26. Li X., Wang Y., Chen S., Tian H., Fu D., Zhu B., Luo Y., Zhu H. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant Sci. 2018;9:1-12. DOI 10.3389/fpls.2018.00559.

27. Lim G., Wang G.P., Hemming M., McGrath D.J., Jones D.A. High resolution genetic and physical mapping of the I-3 region of tomato chromosome 7 reveals almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with duplications on Arabidopsis chromosomes 1, 2 and 3. Theor. Appl. Genet. 2008; 118:57-75. DOI 10.1007/s00122-008-0876-2.

28. Liu L., Shao S.Z., Zhang Z.M. Regulation of carotenoid metabolism in tomato. Mol. Plant. 2015;8:28-39. DOI 10.1016/j.molp.2014.11.006.

29. Merk H.L., Foolad M.R. Parent-offspring correlation estimate of heritability for late blight resistance conferred by an accession of the tomato wild species Solanum pimpinellifolium. Plant Breed. 2012; 131:203-210.

30. Meshi T., Motoyoshi F., Adachi A., Watanabe Y., Takamatsu N., Okada Y. Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tin-1. EMBO J. 1988;7:1575-1581.

31. Meshi T., Motoyoshi F., Maeda T., Yoshiwoka S., Watanabe H., Okada Y. Mutations in the tobacco mosaic virus 30-kDa protein gene overcome Tm-2 resistance in tomato. Plant Cell. 1989;1:515-522.

32. Moore S., Vrebalov J., Payton P., Giovannoni J. Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J. Exp. Bot. 2002;53:2023-2030. DOI 10.1093/jxb/erf057.

33. Moreau P., Thoquet P., Olivier J., Laterrot H., Grimsley N. Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Mol. Plant-Microbe Interact. 1998; 11:259-269. DOI 10.1094/MPMI.1998.11.4.259.

34. Muños S., Ranc N., Botton E., Bérard A., Rolland S., Duffé P., Carretero Y., Le Paslier M.-C., Delalande C., Bouzayen M., Brunel D., Causse M. Increase in tomato locule number is controlled by two single nucleotide polymorphisms located near WUSCHEL. Plant Physiol. 2011;156:2244-2254. DOI 10.1104/pp.111.173997.

35. Ohmori T., Murata M., Motoyoshi F. Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor. Appl. Genet. 1996;92:151-156. DOI 10.1007/BF00223369.

36. Ohyama A., Asamizu E., Negoro S., Miyatake K., Yamaguchi H., Tabata S., Fukuoka H. Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases. Mol. Breed. 2009;23(4):685-691. DOI 10.1007/s11032-009-9265-z.

37. Ori N., Eshed Y., Paran I., Presting G., Aviv D., Tanksley S., Zamir D., Fluhr R. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell. 1997;9:521532. DOI 10.1105/tpc.9.4.521.

38. Panthee D.R., Piotrowski A., Ibrahem R. Mapping quantitative trait loci (QTL) for resistance to late blight in tomato. Int. J. Mol. Sci. 2017;18:1589. DOI 10.3390/ijms18071589.

39. Pnueli L., Carmel-Goren L., Hareven D., Gutfinger T., Alvarez J., Ganal M., Zamir D., Lifschitz E. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development. 1998; 125:1979-1989.

40. Powell A.L.T., Nguyen C.V., Hill T., Cheng K.L., Figueroa-Balderas R., Aktas H., Ashrafi H., Pons C., Fernández-Muñoz R., Vicente A., Lopez-Baltazar J., Barry C.S., Liu Y., Chetelat R., Granell A., Van Deynze A., Giovannoni J., Bennett A.B. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science. 2012;336:17111715. DOI 10.1126/science.1222218.

41. Pukhalskij V.A., Odintsova T.I., Izvekova L.I., Andreeva E.N., Korostyleva T.I., Istomina E.A., Slavokhotova A.A., Shiyan A.N., Kozlovskaya G.V., Obolenkova L.A., Badaeva E.D., Bilinskaya E.N. The problems of natural and induced immunity in plants. To the development of ideas N.I. Vavilova. Informatsionnyy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2007;11(3/4):631-649. (in Russian)

42. Rao A.V., Rao L.G. Carotenoids and human health. Pharmacol. Res. 2007;55:207-216. DOI 10.1016/j.phrs.2007.01.012.

43. Rick C.M. Hybridization between Lycopersicon esculentum and Solanum pennellii: phylogenetic and cytogenetic significance. Proc. Natl. Acad. Sci. USA. 1960;46:78-82.

44. Robbins M.D., Masud M.A.T., Panthee D.R., Gardner R.G., Francis D., Stevens M.R. Marker-assisted selection for coupling phase resistance to tomato spotted wilt virus and Phytophthora infestans (late blight) in tomato. HortScience. 2010;45:14241428.

45. Saliba-Colombani V., Causse M., Gervais L., Philouze J. Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome. 2000;43:2940. DOI 10.1139/g99-096.

46. Scott J.W. Breeding for resistance to viral pathogens. Eds. M.K. Razdan, A.K. Mattoo. Genetic Improvement of Solanaceous Crops. Vol. 2. Tomato. Enfield: Science Publishers, 2007;457485.

47. Scott J.W., Agrama H.A., Jones J.P. RFLP-based analysis of recombination among resistance genes to Fusarium wilt races 1, 2, and 3 in tomato. J. Am. Soc. Hort. Sci. 2004;129:394-400.

48. Shirasawa K., Isobe S., Hirakawa H., Nakamura Y., Sato S., Tabata S. SNP discovery and linkage map construction in cultivated tomato. DNA Res. 2010;17(6):381-391. DOI 10.1093/dnares/dsq024.

49. Smiech M., Rusinowski Z., Malepszy S., Niemirowicz-Szczytt K. New RAPD markers of tomato spotted wilt virus (TSWV) resistance in Lycopersicon esculentum Mill. Acta Physiol. Plantarum. 2000;22: 299-303.

50. Sobir O.T., Murata M., Motoyoshi F. Molecular characterization of the SCAR markers tightly linked to the Tm-2 locus of the genus Lycopersicon. Theor. Appl. Genet. 2000;101:64-69.

51. Soyk S., Müller N.A., Park S.J., Schmalenbach I., Jiang K., Hayama R., Zhang L., Van Eck J., Jiménez-Gómez J.M., Lippman Z.B. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat. Genet. 2017;49:162-168. DOI 10.1038/ng.3733.

52. Staniaszek M., Szajko K., Kozik E.U., Nowakowska M., Marczewski W. The novel ps and ps-2 specific markers for selection of functional male sterile tomato lines in breeding programs and hybrids seed production. J. Agr. Sci. 2012;4(10):61-67. DOI 10.5539/jas.v4n10p61.

53. Stevens M.R., Scott S.J., Gergerich R.C. Inheritance of gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica. 1992;59:9-17. DOI 10.1007/BF00025356.

54. Tanksley S.D., Ganal M.W., Prince J.P., de Vicente M.C., Bonierbale M.W., Broun P., Fulton T.M., Giovannoni J.J., Grandillo S., Martin G.B., Messeguer R., Miller J.C., Miller L., Paterson A.H., Pineda O., Riider M.S., Wing R.A., Wu W., Young N.D. Highdensity molecular linkage maps of the tomato and potato genomes. Genetics. 1992;132:1141-1160.

55. Tanyolac B., Akkale C. Screening of resistance genes to fusarium root rot and fusarium wilt diseases in F3 family lines of tomato (Lycopersicon esculentum) using RAPD and CAPS markers. Afr. J. Biotech. 2010;9:2727-2730.

56. Tieman D., Zhu G., Resende M.F.R., Lin T., Nguyen C., Bies D., Rambla J.L., Beltran K.S.O., Taylor M., Zhang B., Ikeda H., Liu Z., Fisher J., Zemach I., Monforte A., Zamir D., Granell A., Kirst M., Huang S., Klee H. A chemical genetic roadmap to improved tomato flavor. Science. 2017;355(6323):391-394. DOI 10.1126/science.aal1556.

57. Truong H.T.H., Choi H.-S., Cho M.C., Lee H.E., Kim J.H. Use of Cf-9 gene-based markers inmarker-assisted selection to screen tomato cultivars with resistance to Cladosporium fulvum. Hort. Environ. Biotechnol. 2011;52:204-210. DOI 10.1007/s13580011-0164-y.

58. Vakalounakis D.J., Laterrot H., Moretti A., Ligoxigakis E.K., Smardas K. Linkage between Frl (Fusarium oxysporum f. sp. radicis-lycopersici resistance) and Tm-2 (tobacco mosaic virus resistance-2) loci in tomato (Lycopersicon esculentum). Ann. Appl. Biol. 1997; 130:319-323. DOI 10.1111/j.1744-7348.1997.tb06835.x.

59. Van Schalkwyk A., Wenzl P., Smit S., Lopez-Cobollo R., Kilian A., Bishop G., Hefer C., Berger D.K. Bin mapping of tomato diversity array (DArT) markers to genomic regions of Solanum lycopersicum × Solanum pennellii introgression lines. Theor. Appl. Genet. 2012;124:947-956. DOI 10.1007/s00122-011-1759-5.

60. Vrebalov J., Ruezinsky D., Padmanabhan V., White R., Medrano D., Drake R., Schuch W., Giovannoni J. MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science. 2002;296:343-346. DOI 10.1126/science.1068181.

61. Wang A.X., Meng F.J., Xu X.Y. Development of molecular markers linked to Cladosporium fulvum resistant gene Cf-6 in tomato by RAPD and SSR methods. HortScience. 2007;42:11-15.

62. Wang H., Hutton S.F., Robbins M.D., Sim S.-C., Scott J.W., Yang W., Jones J.B., Francis D.M. Molecular mapping of hypersensitive resistance to race T3 of tomato bacterial spot from Hawaii 7981 maps to chromosome 11. Phytopathology. 2011;101:1217-1223. DOI 10.1094/PHYTO-12-10-0345.

63. Wang J.F., Jones J.B., Scott J.W., Stall R.E. Several genes in Lycopersicon esculentum control hypersensitivity to Xanthomonas campestris pv. vesicatoria. Phytopathology. 1994;84:702-706. DOI 10.1094/Phyto-84-702.

64. Yang W., Francis D.M. Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J. Am. Soc. Hort. Sci. 2005;130:716-721. DOI 10.21273/JASHS.130.5.716.

65. Yu Q.-H., Wang B., Li N., Tang Y., Yang S., Yang T., Xu J., Guo C., Yan P., Wang Q., Asmutola P. CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long shelf life tomato lines. Sci. Rep. 2017;7:11874. DOI 10.1038/s41598-017-12262-1.

66. Yu Z.H., Wang J.F., Stall R.E., Vallejos C.E. Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) Dye. Genetics. 1995;141:675-682.

67. Zhang C., Liu L., Wang X., Vossen J., Li G., Li T., Zheng Z., Gao J., Guo Y., Visser R.G.F., Li J., Bai Y., Du Y. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theor. Appl. Genet. 2014;127:1353-1364. DOI 10.1007/s00122-014-2303-1.


Просмотров: 64


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)