Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Transcriptomic analysis of Medicago truncatula calli with MtWOX9-1 overexpression

https://doi.org/10.18699/VJ19.542

Abstract

Somatic embryogenesis (SE) is the development of embryo-like structures from somatic plant tissues. This process rarely can be observed in nature, but for many plant species, in vitro protocols are developed, which allow to obtain somatic embryos formation directly from tissues of plant explant or from the embryogenic callus. SE is widely used for plant propagation and transformation; therefore, the search for SE stimulators and revealing of the mechanisms of their functioning are very important for biotechnology. Among the SE regulators, proteins of the WOX family play significant roles. WOX (WUSCHEL-RELATED HOMEOBOX) is a homeodomain-containing transcription factor family. Different WOX genes  function  in different plant organs  and tissues, maintaining meristem activity and regulating cell proliferation  and differentiation. Recently, we have shown  that  transcription factor MtWOX9-1, belonging to the WOX family, can stimulate SE in the Medicago truncatula callus culture. In this research, transcriptomic analysis of highly embryogenic calli with MtWOX9-1 overexpression was performed in comparison to wildtype calli. It was shown that MtWOX9-1 overexpression led to the activation  of several groups  of genes,  including genes  related  to cell division, tissue differentiation, and seed development. Enriched GO pathways included  several groups  related to histone  methyltransferase activity as well as DNA methylation and chromatin binding,  suggesting major epigenetic changes that  occur in call overexpressing MtWOX9-1. Using Medicago Truncatula Gene Expression Atlas, we also identified a group of genes  coding for transcription factors that were both coexpressed with MtWOX9-1 in different plant organs  and differentially expressed in our samples. These genes  are putative targets of MtWOX9-1, and they may act in the same pathway with this regulator during SE.

About the Authors

V. E. Tvorogova
St. Petersburg State University, Department of Genetics and Biotechnology
Russian Federation

St. Petersbur.



E. Y. Krasnoperova
St. Petersburg State University, Department of Genetics and Biotechnology
Russian Federation

St. Petersbur.



A. A. Kudriashov
St. Petersburg State University, Department of Genetics and Biotechnology
Russian Federation

St. Petersbur.



K. A. Kuznetsova
St. Petersburg State University, Department of Genetics and Biotechnology
Russian Federation

St. Petersbur.



E. A. Potsenkovskaya
St. Petersburg State University, Department of Genetics and Biotechnology
Russian Federation

St. Petersbur.



Y. A. Fedorova
St. Petersburg State University, Department of Genetics and Biotechnology
Russian Federation

St. Petersbur.



L. A. Lutova
St. Petersburg State University, Department of Genetics and Biotechnology
Russian Federation
St. Petersbur.


References

1. Alvarez J.M., Sohlberg J., Engström P., Zhu T., Englund M., Moschou P.N., von Arnold S. The WUSCHEL-RELATED HOMEOBOX 3 gene PaWOX3 regulates lateral organ formation in Norway spruce. New Phytol. 2015;208(4):1078-1088. DOI 10.1111/nph.13536.

2. Ariel F., Diet A., Verdenaud M., Gruber V., Frugier F., Chan R., Crespi M. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell. 2010;22(7):2171-2183. DOI 10.1105/tpc.110.074823.

3. Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., Harris M.A., Hill D.P., Issel-Tarver L., Kasarskis A., Lewis S., Matese J.C., Richardson J.E., Ringwald M., Rubin G.M., Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000;25(1):25-29. DOI 10.1038/75556.

4. Benedito V.A., Torres-Jerez I., Murray J.D., Andriankaja A., Allen S., Kakar K., Wandrey M., Verdier J., Zuber H., Ott T., Moreau S., Niebel A., Frickey T., Weiller G., He J., Dai X., Zhao P., Tang Y., Udvardi M.K. A gene expression atlas of the model legume Medicago truncatula. Plant J. 2008;55(3):504-513. DOI 10.1111/j.1365-313X.2008.03519.x.

5. Bhullar D.S., Sheahan M.B., Rose R.J. RNA Processing body (P-body) dynamics in mesophyll protoplasts re-initiating cell division. Protoplasma. 2017;254(4):1627-1637. DOI 10.1007/s00709-016-1053-0.

6. Bolger A.M., Lohse M., Usadel B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics. 2014;30(15):2114-2120. DOI 10.1093/bioinformatics/btu170.

7. Bouchabké-Coussa O., Obellianne M., Linderme D., Montes E., Maia-Grondard A., Vilaine F., Pannetier C. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep. 2013;32(5):675-686. DOI 10.1007/s00299-013-1402-9.

8. Breuninger H., Rikirsch E., Hermann M., Ueda M., Laux T. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev. Cell. 2008;14(6):867-876. DOI 10.1016/j.devcel.2008.03.008.

9. Caro E., Stroud H., Greenberg M.V.C., Bernatavichute Y.V., Feng S., Groth M., Vashisht A.A., Wohlschlegel J., Jacobsen S.E. The SET-domain protein SUVR5 mediates H3K9me2 deposition and silencing at stimulus response genes in a DNA methylation-independent manner. PLoS Genet. 2012;8(10):e1002995. DOI 10.1371/journal.pgen.1002995.

10. Cecchini N.M., Monteoliva M.I., Alvarez M.E. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol. 2011;155(4):1947-1959. DOI 10.1104/pp.110.167163.

11. Ebbs M.L., Bender J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell. 2006;18(5):1166-1176. DOI 10.1105/tpc.106.041400.

12. Fehér A. Somatic embryogenesis – Stress-induced remodeling of plant cell fate. Biochim. Biophys. Acta. 2015;1849(4):385-402. DOI 10.1016/j.bbagrm.2014.07.005.

13. Gambino G., Minuto M., Boccacci P., Perrone I., Vallania R., Gribaudo I. Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera. J. Exp. Bot. 2011;62(3):1089-1101. DOI 10.1093/jxb/erq349. Hoffmann B., Trinh T.H., Leung J., Kondorosi A., Kondorosi É. A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol. Plant Microbe Interact. 1997;10(3):307-315.

14. Johnson L., Mollah S., Garcia B.A., Muratore T.L., Shabanowitz J., Hunt D.F., Jacobsen S.E. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res. 2004;32(22):6511-6518. DOI 10.1093/nar/gkh992.

15. Kim D., Langmead B., Salzberg S.L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015;12(4):357-360. DOI 10.1038/nmeth.3317.

16. Kopylova E., Noé L., Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic Data. Bioinformatics. 2012;28(24):3211-3217. DOI 10.1093/bioinformatics/bts611.

17. Krishnakumar V., Kim M., Rosen B.D., Karamycheva S., Bidwell S.L., Tang H., Town C.D. MTGD: The Medicago truncatula genome database. Plant Cell Physiol. 2015;56(1):e1. DOI 10.1093/pcp/pcu179.

18. Kumar V., Van Staden J. New insights into plant somatic embryogenesis: an epigenetic view. Acta Physiol. Plant. 2017;39(9):194. DOI 10.1007/s11738-017-2487-5.

19. Kurdyukov S., Song Y., Sheahan M.B., Rose R.J. Transcriptional regulation of early embryo development in the model legume Medicago truncatula. Plant Cell Rep. 2014;33(2):349-362. DOI 10.1007/s00299-013-1535-x.

20. Langfelder P., Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559. DOI 10.1186/1471-2105-9-559.

21. Laux T., Mayer K.F., Berger J., Jürgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development. 1996;122(1):87-96.

22. Lebedeva (Osipova) M.A., Tvorogova V.E., Vinogradova A.P., Gancheva M.S., Azarakhsh M., Ilina E.L., Demchenko K.N., Dodueva I.E., Lutova L.A. Initiation of spontaneous tumors in radish (Raphanus sativus): cellular, molecular and physiological events. J. Plant Physiol. 2015;173:97-104. DOI 10.1016/j.jplph.2014.07.030.

23. Leibfried A., To J.P.C., Busch W., Stehling S., Kehle A., Demar M., Kieber J.J., Lohmann J.U. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature. 2005;438(7071):1172. DOI 10.1038/nature04270.

24. Lenhard M., Bohnert A., Jürgens G., Laux T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell. 2001;105(6):805-814.

25. Levesque-Tremblay G., Müller K., Mansfield S.D., Haughn G.W. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development. Plant Physiol. 2015;167(3): 725-737. DOI 10.1104/pp.114.255604.

26. Li S., Liu L., Li S., Gao L., Zhao Y., Kim Y.J., Chen X. SUVH1, a Su(var)3-9 family member, promotes the expression of genes targeted by DNA methylation. Nucleic Acids Res. 2016;44(2):608-620. DOI 10.1093/nar/gkv958.

27. Li X.-R., Wang L., Ruan Y.-L. Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation. J. Exp. Bot. 2010;61(1):287-295. DOI 10.1093/jxb/erp299.

28. Liu J., Sheng L., Xu Y., Li J., Yang Z., Huang H., Xu L. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell. 2014;26(3):1081-1093. DOI 10.1105/tpc.114.122887.

29. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408. DOI 10.1006/meth.2001.1262.

30. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. DOI 10.1186/s13059-014-0550-8.

31. Ma L., Jiang S., Lin G., Cai J., Ye X., Chen H., Li M., Li H., Takác T., Samaj J., Xu C. Wound-induced pectin methylesterases enhance banana (Musa spp. AAA) susceptibility to Fusarium oxysporum f. sp. cubense. J. Exp. Bot. 2013;64(8):2219-2229. DOI 10.1093/jxb/ert088.

32. Malik M.R., Wang F., Dirpaul J.M., Zhou N., Polowick P.L., Ferrie A.M.R., Krochko J.E. Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol. 2007;144(1):134-154. DOI 10.1104/pp.106.092932.

33. Monteoliva M.I., Rizzi Y.S., Cecchini N.M., Hajirezaei M.-R., Alvarez M.E. Context of action of proline dehydrogenase (ProDH) in the hypersensitive response of Arabidopsis. BMC Plant Biol. 2014; 14:21. DOI 10.1186/1471-2229-14-21.

34. Morgan M., Falcon S., Gentleman R. GSEABase: Gene set enrichment data structures and methods. R package version 1.47.0. 2019.

35. Nic-Can G.I., Avilez-Montalvo J.R., Aviles-Montalvo R.N., Márquez-López R.E., Mellado-Mojica E., Galaz-Ávalos R.M., Loyola-Vargas V.M. The relationship between stress and somatic embryogenesis. In: Loyola-Vargas V.M., Ochoa-Alejo N. (Eds.). Somatic Embryogenesis: Fundamental Aspects and Applications. Cham: Springer International Publishing, 2016;151-170. DOI 10.1007/978-3-319-33705-0_9.

36. Osipova M.A., Mortier V., Demchenko K.N., Tsyganov V.E., Tikhonovich I.A., Lutova L.A., Dolgikh E.A., Goormachtig S. WUS-CHEL-RELATED HOMEOBOX5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation. Plant Physiol. 2012;158(3):1329-1341. DOI 10.1104/pp.111.188078.

37. Pecrix Y., Staton S.E., Sallet E., Lelandais-Brière C., Moreau S., Carrère S., Blein T., Jardinaud M.-F., Latrasse D., Zouine M., Zahm M., Kreplak J., Mayjonade B., Satgé C., Perez M., Cauet S., Marande W., Chantry-Darmon C., Lopez-Roques C., Bouchez O., Bérard A., Debellé F., Muños S., Bendahmane A., Bergès H., Niebel A., Buitink J., Frugier F., Benhamed M., Crespi M., Gouzy J., Gamas P. Wholegenome landscape of Medicago truncatula symbiotic genes. Nat. Plants. 2018;4(12):1017. DOI 10.1038/s41477-018-0286-7.

38. Pérez-Pérez Y., Carneros E., Berenguer E., Solís M.-T., Bárány I., Pintos B., Gómez-Garay A., Risueño M.C., Testillano P.S. Pectin demethylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of Quercus suber. Front. Plant Sci. 2018;9:1915. DOI 10.3389/fpls.2018.01915.

39. Pertea M., Pertea G.M., Antonescu C.M., Chang T.-C., Mendell J.T., Salzberg S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq Reads. Nat. Biotechnol. 2015;33(3):290-295. DOI 10.1038/nbt.3122.

40. Rajakumara E., Law J.A., Simanshu D.K., Voigt P., Johnson L.M., Reinberg D., Patel D.J., Jacobsen S.E. A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo. Genes Dev. 2011;25(2):137-152. DOI 10.1101/gad.1980311.

41. Reinert J., Tazawa M., Semenoff S. Nitrogen compounds as factors of embryogenesis in vitro. Nature. 1967;216(5121):1215. DOI 10.1038/2161215a0.

42. Rose R.J. Somatic embryogenesis in the Medicago truncatula model: cellular and molecular mechanisms. Front. Plant Sci. 2019;10:267. DOI 10.3389/fpls.2019.00267.

43. Rose R.J., McCurdy D.W. New beginnings: Mitochondrial renewal by massive mitochondrial fusion. Trends Plant Sci. 2017;22(8):641-643. DOI 10.1016/j.tplants.2017.06.005.

44. Rupps A., Raschke J., Rümmler M., Linke B., Zoglauer K. Identification of putative homologs of Larix decidua to BABYBOOM (BBM ), LEAFY COTYLEDON1 (LEC1), WUSCHEL-related HOMEO-BOX2 (WOX2) and SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE (SERK) during somatic embryogenesis. Planta. 2016; 243(2):473-488. DOI 10.1007/s00425-015-2409-y.

45. Sarkar A.K., Luijten M., Miyashima S., Lenhard M., Hashimoto T., Nakajima K., Scheres B., Heidstra R., Laux T. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature. 2007;446(7137):811-814. DOI 10.1038/nature05703.

46. Schubert D., Primavesi L., Bishopp A., Roberts G., Doonan J., Jenuwein T., Goodrich J. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J. 2006;25(19):4638-4649. DOI 10.1038/sj.emboj.7601311.

47. Solís M.-T., Berenguer E., Risueño M.C., Testillano P.S. BnPME is progressively induced after microspore reprogramming to embryogenesis, correlating with pectin de-esterification and cell differentiation in Brassica napus. BMC Plant Biol. 2016;16(1):176. DOI 10.1186/s12870-016-0863-8.

48. Solís-Ramos L.Y., González-Estrada T., Nahuath-Dzib S., Zapata-Rodriguez L.C., Castaño E. Overexpression of WUSCHEL in C. chinense causes ectopic morphogenesis. Plant Cell Tiss. Organ Cult. 2009;96(3):279-287. DOI 10.1007/s11240-008-9485-7.

49. Su Y.H., Liu Y.B., Bai B., Zhang X.S. Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front. Plant Sci. 2015;5. DOI 10.3389/fpls.2014.00792.

50. Su Y.H., Zhao X.Y., Liu Y.B., Zhang C.L., O’Neill S.D., Zhang X.S. Auxin-induced wus expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J. 2009;59(3):448-460. DOI 10.1111/j.1365-313X.2009.03880.x.

51. Tiew T.W.-Y., Sheahan M.B., Rose R.J. Peroxisomes contribute to reactive oxygen species homeostasis and cell division induction in Arabidopsis protoplasts. Front. Plant Sci. 2015;6:658. DOI 10.3389/fpls.2015.00658.

52. Tvorogova V.E., Fedorova Y.A., Potsenkovskaya E.A., Kudriashov A.A., Efremova E.P., Kvitkovskaya V.A., Wolabu T.W., Zhang F., Tadege M., Lutova L.A. The WUSCHEL-related homeobox transcription factor MtWOX9-1 stimulates somatic embryogenesis in Medicago truncatula. Plant Cell Tiss. Organ Cult. 2019;138(3):517-527. DOI 10.1007/s11240-019-01648-w.

53. Tvorogova V.E., Fedorova Y.A., Zhang F., Lutova L.A. STENOFOLIA gene and regulation of somatic embryogenesis in Medicago truncatula. Russ. J. Plant Physiol. 2016;63(6):811-821. DOI 10.1134/S1021443716060133.

54. Tvorogova V.E., Lebedeva M.A., Lutova L.A. Expression of WOX and PIN genes during somatic and zygotic embryogenesis in Medicago truncatula. Russ. J. Genet. 2015;51(12):1189-1198. DOI 10.1134/S1022795415120121.

55. Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. DOI 10.1093/nar/gks596.

56. Valle-Gough R.E., Avilés-Viñas S.A., López-Erosa S., Canto-Flick A., Gómez-Uc E., Sáenz-Carbonell L.A., Ochoa-Alejo N., Santana-Buzzy N. Polyamines and WOX genes in the recalcitrance to plant conversion of somatic embryos of Habanero pepper (Capsicum chinense Jacq.). Afr. J. Biotechnol. 2015;4(7):569-581-581. DOI 10.5897/AJB2014.14313.

57. Vinogradova A.P., Lebedeva (Osipova) M.A., Lutova L.A. Meristematic characteristics of tumors initiated by Agrobacterium tumefaciens in pea plants. Russ. J. Genet. 2015;51(1):46-54. DOI 10.1134/S1022795415010123.

58. Wada K.C., Mizuuchi K., Koshio A., Kaneko K., Mitsui T., Takeno K. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis. J. Plant Physiol. 2014;171(11): 895-902. DOI 10.1016/j.jplph.2014.03.008.

59. Wang X.-D., NolanK.E., Irwanto R.R., Sheahan M.B., Rose R.J. Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells. Ann. Bot. 2011;107(4):599-609. DOI 10.1093/aob/mcq269.

60. Wolabu T.W. Molecular analysis of WOX9 function in dicot leaf blade development and identification of sorghum florigens. PhD Thesis. 2015.

61. Xiao Y., Chen Y., Ding Y., Wu J., Wang P., Yu Y., Wei X., Wang Y., Zhang C., Li F., Ge X. Effects of GhWUS from upland cotton (Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration. Plant Sci. 2018;270:157-165. DOI 10.1016/j.plantsci.2018.02.018.

62. Zhang F., Wang Y., Li G., Tang Y., Kramer E.M., Tadege M. STENOFOLIA recruits TOPLESS to repress ASYMMETRIC LEAVES2 at the leaf margin and promote leaf blade outgrowth in Medicago truncatula. Plant Cell. 2014;26(2):650-664. DOI 10.1105/tpc.113.121947. Zhou X., Guo Y., Zhao P., Sun M.-X. Comparative analysis of WUS-CHEL-related homeobox genes revealed their parent-of-origin and cell type-specific expression pattern during early embryogenesis in tobacco. Front. Plant Sci. 2018;9:311. DOI 10.3389/fpls.2018.00311.


Review

Views: 1110


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)