Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Biological and economic characteristics of the allotetraploid with genomic formula DDAuAu from the cereal family

https://doi.org/10.18699/VJ19.549

Abstract

The synthesis  of new  allopolyploid  cereal  genotypes is an important task aimed  at involving new  genetic resources in breeding programs. Diploid species of the genera Triticum and Aegilops – bread  wheat  relatives – are an important source of agronomically  valuable traits. A tetraploid synthetic  with genomic formula DDAuAu was obtained by N.A. Navruzbekov through crossing Aegilops tauschii Coss. and Triticum urartu Thum. ex Gandil. The purpose of this work was to study  the  chromosomal composition and  biological  and  commercially  important traits of the  tetraploid. Cytogenetic analysis using fluorescent in situ hybridization  showed the  presence of all chromosomes of the D genome in the chromosomal complement of the synthetic. By means  of stepwise  vernalization, the winter habit was established for the tetraploid synthetic with the optimum vernalization requirement of 45 days. Under greenhouse conditions, two groups of genotypes were found whose flowering dates differed by 6.5 days, which may indicate an allelism at the Vrn-3 locus. The coloring of various organs of the tetraploid plant, such as coleoptile,  stem, anthers,  and glumes  of the spike, was revealed. The coloration  of the aleurone layer of the grain may indicate that the donor species T. urartu is a carrier of the Ba gene that controls its blue color. A new morphotype of leaf pubescence was found. In terms of productivity, the tetraploid is comparable to bread wheat. Grains are characterized by a supersoft structure and high wet gluten  content, from 39–45 to 65 %, in the field and greenhouse conditions, respectively. Thus, the tetraploid can be used to create  new wheat  genotypes as a source  of untapped genetic diversity, as well as a new genetic model  for studying  the patterns of evolution  of polyploid plants.

About the Authors

K. U. Kurkiev
Dagestan Experimental Station – Department of Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation
Derbent.


I. G. Adonina
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk.


M. Kh. Gadjimagomedova
Dagestan Experimental Station – Department of Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation
Derbent.


L. V. Shchukina
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk.


T. A. Pshenichnikova
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk.


References

1. Aminov N.H., Navruzbekov N.A. Cytogenetic characteristics of a new amphidiploid with genome constitution AuAuDD. Doklady VASKhNIL = Reports of the Academy of Agricultural Sciences. 1985;6:16. (in Russian)

2. Babayants O.V., Babayants L.T., Gorash A.F., Vasil’ev A.A., Tras­ kovetskaya V.A., Palyasnyi V.A. Genetic determination of wheat resistance against Puccinia graminis ( f. sp. Tritici) derived from Aegilops cylindrica, Triticum erebuni, and amphidiploid 4. Cy­ tol. Genet. 2012;46(1):9­14.

3. Badaeva E.D., Amosova A.V., Goncharov N.P., Macas J., Ruban A.S., Grechishnikova I.V., Zoshchuk S.A., Houben A. A set of cytogenetic markers allows the precise identifica­ tion of all A­genome chromosomes in diploid and polyploid wheat. Cytogenet. Genome Res. 2015;146:71­79. DOI 10.1159/000433458.

4. Badaeva E.D., Friebe B., Gill B.S. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosome of diploid species. Genome. 1996;39(2):293­306.

5. Bedbrook J.R., Jones J., O’Dell M., Thompson R.D., Flavell R.B. A molecular description of telomeric heterochromatin in Secale species. Cell. 1980;19:545­560.

6. Davoyan E.R., Mikov D.S., Zubanova Y.S., Boldakov D.M., Da­ voyan R.O., Bebyakina I.V., Bibishev V.A. Study of introgressive lines of common wheat with Aegilops tauschii genetic material for resistance to leaf rust. Vavilovskiy Zhurnal Genetiki i Selek­ tsii = Vavilov Journal of Genetics and Breeding. 2018;22(1): 97­101. DOI 10.18699/VJ18.336. (in Russian)

7. Gandilyan P.A. A new species of tetraploid wheat: Triticum erebuni Gandil. Nauchno­technicheskiy Bulleten VIR = Scientific and Technical Bulletin of VIR. 1984;142:77­78. (in Russian)

8. Gautier M.­F., Cosson P., Guirao A., Alary R., Joudrier Ph. Puroin­ doline genes are highly conserved in diploid ancestor wheatsand related species but absent in tetraploid Triticum species. Plant Sci. 2000;153:81­91.

9. Genaev M.A., Doroshkov A.V., Pshenichnikova T.A., Kolcha­ nov N.A., Afonnikov D.A. Extraction of quantitative character­ istics describing wheat leaf pubescence with a novel image­processing technique. Planta. 2012;236:1943­1954. DOI 10.1007/s00425­012­1751­6.

10. State Standard R 54478­2011. Grain. Methods for Determining Gluten Content and Quality in Wheat. Moscow: Stadartinform Publ., 2012. (in Russian)

11. Ivanov G.I. A new amphidiploid of wheat with genomes DDAbAb. Nauchno­technicheskiy Bulleten VIR = Scientific and Technical Bulletin of VIR. 1984;142:78­79. (in Russian)

12. Jakubtziner M.M., Savitzkii M.C. Grain crops. In: Manual for As­ sessment of Crops. Moscow: Sel’khozgiz Publ., 1947. (in Rus­ sian)

13. Jing H.­C., Kornyukhin D., Kanyuka K., Orford S., Zlatska A., Mitrofanova O.P., Koebner R., Hammond­Kosack K. Identifica­ tion of variation in adaptively important traits and genome­wide analysis of trait–marker associations in Triticum monococcum. J. Exp. Bot. 2007;58(13):3749­3764. DOI 10.1093/jxb/erm225.

14. Johnson H.B. Plant pubescence: an ecological perspective. Bot. Rev. 1975;41:233­258.

15. Khlestkina E.K. Genes determining coloration of different organs in wheat. Vavilovskiy Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2012;16(1):202­216. DOI 10.18699/VJ18.336. (in Russian)

16. Khlestkina E.K., Pshenichnikova T.A., Röder M.S., Salina E.A., Arbuzova V.S., Börner A. Comparative mapping of genes for glume coloration and pubescence in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 2006;113:801­807. DOI 10.1007/s00122­006­0331­1.

17. Kubaláková M., Kovářová P., Suchánková P., Číhalíkova J., Bartoš J., Lucretti S., Watanabe N., Kianian S.F., Doležel J. Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics. 2005;170:823­829. DOI 10.1534/genetics.104.039180.

18. Matsuoka Y. Evolution of polyploid Triticum wheats under cultiva­ tion: the role of domestication, natural hybridization and allo­ polyploid speciation in their diversification. Plant Cell Physiol. 2011;52(5): 750­764. DOI 10.1093/pcp/pcr018.

19. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat. In: 12th International Wheat Genetics Symposium, 8–13 September 2013, Yokohama, Japan.

20. Methods of the State Testing of Agricultural Crop Varieties. Moscow, 1988. (in Russian)

21. Navruzbekov N.A. Synthesis of new wheat­Aegilops hybrids. Tru­ dy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 1982;73(3):141. (in Russian)

22. Navruzbekov N.A. Crossing of wheat­aegilops tetraploid amphi­ diploid with genome composition AuD to some species of genera Triticum L., Aegilops L., Secale L. and Haynaldiya vilossa (L.). Nauchno­technicheskiy Bulleten VIR = Scientific and Technical Bulletin of VIR. 1984;146:64­67. (in Russian)

23. Pshenichnikova T.A., Bokarev I.E., Shchukina L.V. Hybrid and monosomic analyses of smoky coloration of the ear in common wheat. Genetika = Genetics. 2005;41(8):1147­1149. (in Russian)

24. Pshenichnikova T.A., Doroshkov A.V., Simonov A.V., Afon­ nikov D.A., Börner A. Diversity of leaf pubescence in bread wheat and relative species. Genet. Resour. Crop. Evol. 2017;64: 1761­1773. DOI 10.1007/s10722­016­0471­3.

25. Pshenichnikova T.A., Doroshkov A.V., Simonov A.V., Yudi­ na M.A., Afonnikov D.A., Permyakova M.D., Permyakov A.V., Osipova S.V., Börner A. Leaf hairiness in wheat: genetic, evolutional and physiological aspects. EWAC Newsletter. 2019. Proceedings of the 17th International EWAC Conference, 3–8 June 2018, Bucharest, Romania: 32­38.

26. Rayburn A.L., Gill B.S. Isolation of a D­genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 1986;4(2):102­109.

27. Salina E.A., Lim Y.K., Badaeva E.D., Shcherban A.B., Ado­ nina I.G., Amosova A.V., Samatadze T.E., Vatolina T.Yu., Zo­ shchuk S.A., Leitch A.A. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome. 2006;49:1023­1035. DOI 10.1139/G06­050.

28. Schneider A., Linc G., Molnar­Lang M. Fluorescence in situ hybridization polymorphism using two repetitive DNA clones indifferent cultivars of wheat. Plant Breed. 2003;122:396­400. DOI 10.1046/j.1439­0523.2003.00891.x.

29. Schuepp P.H. Leaf boundary layers. New Phytologist. 1993;125: 477­507.

30. Singh K., Ghai M., Garg M., Chhuneja P., Kaur P., Schnurbusch T., Keller B., Dhaliwal H.S. An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum ×T. monococcum RIL population. Theor. Appl. Genet. 2007;115:301­312. DOI 10.1007/s00122­007­0543­z.

31. State Standard R 54478­2011. Grain. Methods for determining glu­ ten content and quality in wheat. Moscow: Stadartinform, 2012.

32. Tsunewaki K., Ebana K. Production of near­isogenic lines of com­ mon wheat for glaucousness and genetic basis of this trait clarified by their use. Genes Genet. Syst. 1999;74:33­41.


Review

Views: 603


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)