Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Single nucleotide polymorphism and expression of genes for immune competent cell proliferation and differentiation in radiation-exposed individuals

https://doi.org/10.18699/VJ20.632

Abstract

It is known that ionizing radiation influences the expression of the genes that play a key role in the mechanisms of maintaining the stability of cellular homeostasis. As a rule, changes in the transcriptome of an exposed cell occur within the first 24 hours following radiation exposure. And it predetermines early response in the case of genome damage. Later on modulations in gene transcription activity are also possible and could result in a carcinogenic effect. However, in order to find the role of exogenous factors (ionizing radiation), it is also necessary to take into account the contribution of endogenous factors that are able to modify gene transcription activity. This is especially important for long after the onset of radiation exposure. Single nucleotide polymorphisms located in regulatory regions of the genes may belong to this group of factors. The objective of the current study was to analyze the influence of ionizing radiation on the transcription activity of the STAT3, GATA3, NFkB1, PADI4 genes, which regulate proliferation and differentiation of immune competent human cells; and to assess the potential influence of single nucleotide polymorphisms located in regulatory regions of the genes on the amount of mRNA. The study involved people who had been chronically exposed due to releases of radioactive waste into the Techa River. It was observed that 60 years after the onset of radiation exposure changes in the transcription activity of the NFkB1 and PADI4 genes were registered in people with cumulative doses to RBM within the range 78–3510 mGy. In people who had been chronically exposed, the effect of allelic variations in rs1053023, rs4143094, rs28362491, rs874881 on the level of mRNAs of the STAT3, GATA3, PADI4, NFkB1 genes has not been established.

About the Authors

E. A. Blinova
Urals Research Center for Radiation Medicine; Chelyabinsk State University
Russian Federation
Chelyabinsk


V. S. Nikiforov
Urals Research Center for Radiation Medicine
Russian Federation
Chelyabinsk


M. A. Yanishevskaya
Urals Research Center for Radiation Medicine; Chelyabinsk State University
Russian Federation
Chelyabinsk


A. A. Akleyev
Urals Research Center for Radiation Medicine; South-Urals State Medical University of the Ministry of Healthcare of Russian Federation
Russian Federation
Chelyabinsk


References

1. Akleyev A.A., Nikiforov V.S., Blinova E.A., Dolgushin I.I. Delayed expression of immune response genes in persons chronically exposed to radiation. Rossiyskiy Immunologicheskiy Zhurnal = Russian Journal of Immunology. 2019;13(22):1042-1044. (in Russian)

2. Akleyev A.V. (Ed.) The Consequences of Radioactive Pollution of the Techa River. Chelyabinsk: The Book Publ., 2016. (in Russian)

3. Albanese J., Martens K., Karanitsa L.V., Schreyer S.K., Dainiak N. Multivariate analysis of low-dose radiation-associated changes in cytokine gene expression profiles using microarray technology. Exp. Hematol. 2007;35(4):47-54. DOI 10.1016/j.exphem.2007.01.012.

4. Amundson S.A., Lee R., Koch-Paiz C.A. Differential responses of stress genes to low dose-rate gamma irradiation. Mol. Cancer Res. 2003;1(6):445-452.

5. Azimian H., Bahreyni-Toossi M., Rezaei A., Rafatpanah H., Hamzehloei T., Fardid R. Up-regulation of Bcl-2 expression in cultured human lymphocytes after exposure to low doses of gamma radiation. J. Med. Phys. 2015;40(1):38-44. DOI 10.4103/0971-6203.152249.

6. Barnes P.J., Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 1997; 336(15):1066-1071. DOI 10.1056/NEJM199704103361506.

7. Bazyka D., Ilienko I., Sushko V., Loganovsky K., Lyashenko L., Golyarnik N., Lyaskivska O., Nechaev S., Shvayko L., Bazyka K., Pilinska M., Bezdrobna L. Biological markers of external and internal exposure in shelter construction workers: a 13-year experience. Radiat. Prot. Dosim. 2018;182(1):146-153. DOI 10.1093/rpd/ncy128.

8. Bhattacharya R., Rose P.W., Burley S.K., Prlić A. Impact of genetic variation on three dimensional structure and function of proteins. PloS One. 2017;12(3):e0171355. DOI 10.1371/journal.pone.0171355.

9. Brest P., Lapaquette P., Souidi M., Lebrigand K., Cesaro A., VouretCraviari V., Mari B., Barbry P., Mosnier J.F., Hebuterne X., HarelBellan A., Mograbi B., Darfeuille-Michaud A., Hofman P. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat. Genet. 2011;43(3):242-245. DOI 10.1038/ng.762.

10. Campbell T.M., Castro M.A.A., de Santiago I., Fletcher M.N.C., Halim S., Prathalingam R., Ponder B.A.J., Meyer K.B. FGFR2 risk SNPs confer breast cancer risk by augmenting estrogen responsiveness. Carcinogenesis. 2016;37(8):741-750. DOI 10.1093/carcin/bgw065.

11. Degteva M.O., Napier B.A., Tolstykh E.I., Shishkina E.A., Shagina N.B., Volchkova A.Y., Bougrov N.G., Smith M.A., Anspaugh L.R. Enhancements in the Techa River Dosimetry System: TRDS-2016D code for reconstruction of deterministic estimates of dose from environmental exposures. Health Phys. 2019;117(4):378-387. DOI 10.1097/HP.0000000000001067.

12. Ding L.H., Shingyoji M., Chen F., Hwang J.J., Burma S., Lee C., Cheng J.F., Chen D.J. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: A comparative study of low and high doses. Radiat. Res. 2005;164(1):17-26. DOI 10.1667/rr3354.

13. DuPage M., Bluestone J.A. Harnessing the plasticity of CD4(+) T cell to treat immune-mediated disease. Nat. Rev. Immunol. 2016;16(3): 149-163. DOI 10.1038/nri.2015.18.

14. Fachin A.L., Mello S.S., Sandrin-Garcia P., Junta C.M., Ghilardi-Netto T., Donadi E.A., Passos G.A., Sakamoto-Hojo E.T. Gene expression profiles in radiation workers occupationally exposed to ionizing radiation. J. Radiat. Res. 2009;50(1):61-71. DOI 10.1269/jrr.08034.

15. HapMap Genotype Data Portal. – URL: www.hapmap.ncbi.nlm.nih.gov

16. Ilienko I.N., Bazyka D.A. Overexpression of TP53, TP53I3 and BIRC5, alterations of gene regulation of apoptosis and aging of human immune cells in a remote period after radiation exposure. Probl. Radiac. Med. Radiobiol. 2016;21:238-246.

17. Krestinina L.Yu., Silkin S.S., Mikryukova L.D., Epifanova S.B., Akleyev A.V. Risk of death from solid cancer among residents of the Techa Riverside and the East Urals radioactive trace areas exposed to radiation: comparative analysis. Radiatciya i Risk = Radiation and Risk (Bulletin of the National Radiation and Epidemiological Registry). 2017;26(1):100-114. DOI 10.21870/0131-3878-2017-261-100-114. (in Russian)

18. National Center for Biotechnology Information (NCBI). – URL: www.ncbi.nlm.nih.gov (in Russian)

19. Nikiforov V.S., Blinova E.A., Akleyev A.V. Influence of a combination of radiation and non-radiation factors on gene transcriptional activity profile in chronically exposed persons. Voprosy Radiatsionnoy Bezopasnosti = Radiation Safety Issues. 2019;2(94):64-70. (in Russian)

20. Robert F., Pelletier J. Exploring the impact of single-nucleotide polymorphisms on translation. Front. Genet. 2018;9:507. DOI 10.3389/fgene.2018.00507.

21. Sanitary Regulations and Standards SanPiN 2.6.1.2523-09. Radiation Safety Standard-99/2009 (NRB-99/2009). p. 3.1.4. (in Russian)

22. Schüz J., Deltour I., Krestinina L.Y., Tsareva Y.V., Tolstykh E.I., Sokolnikov M.E., Akleyev A.V. In utero exposure to radiation and haematological malignancies: pooled analysis of Southern Urals cohorts. Br. J. Cancer. 2017;116(1):126-133. DOI 10.1038/bjc.2016.373.

23. Shastry B.S. SNPs: impact on gene function and phenotype. Methods Mol. Biol. (Clifton, N.J.). 2009;578:3-22. DOI 10.1007/978-160327-411-1_1.

24. Single-Nucleotide Polymorphism Database (SNP) – URL: www.snpedia.com

25. Tan H. The association between gene SNPs and cancer predisposition: Correlation or causality? EBioMedicine. 2017;16:8-9. DOI 10.1016/j.ebiom.2017.01.047.

26. Visscher P.M., Brown M.A., McCarthy M.I., Yang J. Five years of GWAS discovery. Am. J. Hum. Genet. 2012;90(1):7-24. DOI 10.1016/j.ajhg.2011.11.029.

27. Wang Y., Qiu C., Cui Q. A large-scale analysis of the relationship of synonymous SNPs changing microRNA regulation with functionality and disease. Int. J. Mol. Sci. 2015;16(10):23545-23555. DOI 10.3390/ijms161023545.

28. Woloschak G.E., Shearin-Jones P., Chang-Liu C.M. Effects of ionizing radiation on expression of genes encoding cytoskeletal elements: Kinetics and dose effects. Mol. Carcinog. 1990;3(6):374-378. DOI 10.1002/mc.2940030609.

29. Wright J.B., Brown S.J., Cole M.D. Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol. Cell. Biol. 2010;30(6):1411-1420. DOI 10.1128/MCB.01384-09.

30. Wyrobek A.J., Manohar C.F., Krishnan V.V., Nelson D.O., Furtado M.R., Bhattacharya M.S., Marchetti F., Coleman M.A. Low dose radiation response curves, networks and pathways in human lymphoblastoid cells exposed from 1 to 10 cGy of acute gamma radiation. Mutat. Res. 2011;722(2):119-130. DOI 10.1016/j.mrgentox.2011.03.002.


Review

Views: 916


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)