Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Полиморфизм и экспрессия генов пролиферации и дифференцировки иммунокомпетентных клеток у лиц, подвергшихся радиационному воздействию

https://doi.org/10.18699/VJ20.632

Аннотация

Известно, что ионизирующее излучение влияет на экспрессию генов, выполняющих ключевую роль в механизмах поддержания стабильности клеточного гомеостаза. Как правило, изменение в транскриптоме облученной клетки происходит в первые часы и сутки после радиационного воздействия, что обусловливает ее ранний ответ при повреждении генома. В отдаленном периоде также возможны модуляции в транскрипционной активности генов, приводящие к развитию канцерогенных эффектов облучения. Однако для установления роли экзогенных факторов (ионизирующего излучения) в модификации экспрессии генов клеточного гомеостаза необходимо учитывать и роль эндогенных факторов, способных модифицировать транскрипционную активность генов, что особенно актуально в отдаленном периоде после начала радиационного воздействия. К таким факторам могут относиться полиморфные варианты генов, расположенные в регуляторных областях. Цель настоящего исследования – анализ влияния ионизирующего излучения в отдаленном периоде на содержание мРНК генов STAT3, GATA3, NFkB1, PADI4, регулирующих процессы пролиферации и дифференцировки иммунокомпетентных клеток человека, а также оценка связи аллельных вариаций rs1053023, rs4143094, rs28362491, rs874881 на количество мРНК генов STAT3, GATA3, PADI4, NFkB1. Исследование проведено у лиц, подвергшихся аварийному хроническому радиационному воздействию в результате сбросов радиоактивных отходов в реку Течу. Установлено, что спустя 60 лет после начала радиационного воздействия у лиц, имеющих кумулятивные дозы облучения ККМ в диапазоне от 78 до 3510 мГр, регистрируются изменения в транскрипционной активности генов NFkB1 и PADI4. Не выявлено влияния аллельных вариаций rs1053023, rs4143094, rs28362491, rs874881 на количество мРНК генов STAT3, GATA3, PADI4, NFkB1 у облученных лиц.

Об авторах

Е. А. Блинова
Уральский научно-практический центр радиационной медицины Федерального медико-биологического агентства России; Челябинский государственный университет
Россия
Челябинск


В. С. Никифоров
Уральский научно-практический центр радиационной медицины Федерального медико-биологического агентства России
Россия
Челябинск


М. А. Янишевская
Уральский научно-практический центр радиационной медицины Федерального медико-биологического агентства России; Челябинский государственный университет
Россия
Челябинск


А. А. Аклеев
Уральский научно-практический центр радиационной медицины Федерального медико-биологического агентства России; Южно-Уральский государственный медицинский университет Министерства здравоохранения Российской Федерации
Россия
Челябинск


Список литературы

1. Akleyev A.A., Nikiforov V.S., Blinova E.A., Dolgushin I.I. Delayed expression of immune response genes in persons chronically exposed to radiation. Rossiyskiy Immunologicheskiy Zhurnal = Russian Journal of Immunology. 2019;13(22):1042-1044. (in Russian)

2. Akleyev A.V. (Ed.) The Consequences of Radioactive Pollution of the Techa River. Chelyabinsk: The Book Publ., 2016. (in Russian)

3. Albanese J., Martens K., Karanitsa L.V., Schreyer S.K., Dainiak N. Multivariate analysis of low-dose radiation-associated changes in cytokine gene expression profiles using microarray technology. Exp. Hematol. 2007;35(4):47-54. DOI 10.1016/j.exphem.2007.01.012.

4. Amundson S.A., Lee R., Koch-Paiz C.A. Differential responses of stress genes to low dose-rate gamma irradiation. Mol. Cancer Res. 2003;1(6):445-452.

5. Azimian H., Bahreyni-Toossi M., Rezaei A., Rafatpanah H., Hamzehloei T., Fardid R. Up-regulation of Bcl-2 expression in cultured human lymphocytes after exposure to low doses of gamma radiation. J. Med. Phys. 2015;40(1):38-44. DOI 10.4103/0971-6203.152249.

6. Barnes P.J., Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 1997; 336(15):1066-1071. DOI 10.1056/NEJM199704103361506.

7. Bazyka D., Ilienko I., Sushko V., Loganovsky K., Lyashenko L., Golyarnik N., Lyaskivska O., Nechaev S., Shvayko L., Bazyka K., Pilinska M., Bezdrobna L. Biological markers of external and internal exposure in shelter construction workers: a 13-year experience. Radiat. Prot. Dosim. 2018;182(1):146-153. DOI 10.1093/rpd/ncy128.

8. Bhattacharya R., Rose P.W., Burley S.K., Prlić A. Impact of genetic variation on three dimensional structure and function of proteins. PloS One. 2017;12(3):e0171355. DOI 10.1371/journal.pone.0171355.

9. Brest P., Lapaquette P., Souidi M., Lebrigand K., Cesaro A., VouretCraviari V., Mari B., Barbry P., Mosnier J.F., Hebuterne X., HarelBellan A., Mograbi B., Darfeuille-Michaud A., Hofman P. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat. Genet. 2011;43(3):242-245. DOI 10.1038/ng.762.

10. Campbell T.M., Castro M.A.A., de Santiago I., Fletcher M.N.C., Halim S., Prathalingam R., Ponder B.A.J., Meyer K.B. FGFR2 risk SNPs confer breast cancer risk by augmenting estrogen responsiveness. Carcinogenesis. 2016;37(8):741-750. DOI 10.1093/carcin/bgw065.

11. Degteva M.O., Napier B.A., Tolstykh E.I., Shishkina E.A., Shagina N.B., Volchkova A.Y., Bougrov N.G., Smith M.A., Anspaugh L.R. Enhancements in the Techa River Dosimetry System: TRDS-2016D code for reconstruction of deterministic estimates of dose from environmental exposures. Health Phys. 2019;117(4):378-387. DOI 10.1097/HP.0000000000001067.

12. Ding L.H., Shingyoji M., Chen F., Hwang J.J., Burma S., Lee C., Cheng J.F., Chen D.J. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: A comparative study of low and high doses. Radiat. Res. 2005;164(1):17-26. DOI 10.1667/rr3354.

13. DuPage M., Bluestone J.A. Harnessing the plasticity of CD4(+) T cell to treat immune-mediated disease. Nat. Rev. Immunol. 2016;16(3): 149-163. DOI 10.1038/nri.2015.18.

14. Fachin A.L., Mello S.S., Sandrin-Garcia P., Junta C.M., Ghilardi-Netto T., Donadi E.A., Passos G.A., Sakamoto-Hojo E.T. Gene expression profiles in radiation workers occupationally exposed to ionizing radiation. J. Radiat. Res. 2009;50(1):61-71. DOI 10.1269/jrr.08034.

15. HapMap Genotype Data Portal. – URL: www.hapmap.ncbi.nlm.nih.gov

16. Ilienko I.N., Bazyka D.A. Overexpression of TP53, TP53I3 and BIRC5, alterations of gene regulation of apoptosis and aging of human immune cells in a remote period after radiation exposure. Probl. Radiac. Med. Radiobiol. 2016;21:238-246.

17. Krestinina L.Yu., Silkin S.S., Mikryukova L.D., Epifanova S.B., Akleyev A.V. Risk of death from solid cancer among residents of the Techa Riverside and the East Urals radioactive trace areas exposed to radiation: comparative analysis. Radiatciya i Risk = Radiation and Risk (Bulletin of the National Radiation and Epidemiological Registry). 2017;26(1):100-114. DOI 10.21870/0131-3878-2017-261-100-114. (in Russian)

18. National Center for Biotechnology Information (NCBI). – URL: www.ncbi.nlm.nih.gov (in Russian)

19. Nikiforov V.S., Blinova E.A., Akleyev A.V. Influence of a combination of radiation and non-radiation factors on gene transcriptional activity profile in chronically exposed persons. Voprosy Radiatsionnoy Bezopasnosti = Radiation Safety Issues. 2019;2(94):64-70. (in Russian)

20. Robert F., Pelletier J. Exploring the impact of single-nucleotide polymorphisms on translation. Front. Genet. 2018;9:507. DOI 10.3389/fgene.2018.00507.

21. Sanitary Regulations and Standards SanPiN 2.6.1.2523-09. Radiation Safety Standard-99/2009 (NRB-99/2009). p. 3.1.4. (in Russian)

22. Schüz J., Deltour I., Krestinina L.Y., Tsareva Y.V., Tolstykh E.I., Sokolnikov M.E., Akleyev A.V. In utero exposure to radiation and haematological malignancies: pooled analysis of Southern Urals cohorts. Br. J. Cancer. 2017;116(1):126-133. DOI 10.1038/bjc.2016.373.

23. Shastry B.S. SNPs: impact on gene function and phenotype. Methods Mol. Biol. (Clifton, N.J.). 2009;578:3-22. DOI 10.1007/978-160327-411-1_1.

24. Single-Nucleotide Polymorphism Database (SNP) – URL: www.snpedia.com

25. Tan H. The association between gene SNPs and cancer predisposition: Correlation or causality? EBioMedicine. 2017;16:8-9. DOI 10.1016/j.ebiom.2017.01.047.

26. Visscher P.M., Brown M.A., McCarthy M.I., Yang J. Five years of GWAS discovery. Am. J. Hum. Genet. 2012;90(1):7-24. DOI 10.1016/j.ajhg.2011.11.029.

27. Wang Y., Qiu C., Cui Q. A large-scale analysis of the relationship of synonymous SNPs changing microRNA regulation with functionality and disease. Int. J. Mol. Sci. 2015;16(10):23545-23555. DOI 10.3390/ijms161023545.

28. Woloschak G.E., Shearin-Jones P., Chang-Liu C.M. Effects of ionizing radiation on expression of genes encoding cytoskeletal elements: Kinetics and dose effects. Mol. Carcinog. 1990;3(6):374-378. DOI 10.1002/mc.2940030609.

29. Wright J.B., Brown S.J., Cole M.D. Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol. Cell. Biol. 2010;30(6):1411-1420. DOI 10.1128/MCB.01384-09.

30. Wyrobek A.J., Manohar C.F., Krishnan V.V., Nelson D.O., Furtado M.R., Bhattacharya M.S., Marchetti F., Coleman M.A. Low dose radiation response curves, networks and pathways in human lymphoblastoid cells exposed from 1 to 10 cGy of acute gamma radiation. Mutat. Res. 2011;722(2):119-130. DOI 10.1016/j.mrgentox.2011.03.002.


Рецензия

Просмотров: 869


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)