Молекулярно-генетические основы устойчивости семян к окислительному стрессу при хранении
https://doi.org/10.18699/VJ20.47-o
Аннотация
Сохранение генетического разнообразия растений, в том числе хозяйственно значимых культур, является основой продовольственной безопасности. В мире около 90 % генетического разнообразия культурных растений сохраняется в виде семян в генных банках. В процессе хранения в семенах накапливаются свободные радикалы, в первую очередь активные формы кислорода (АФК). Повышение уровня АФК вызывает окислительный стресс, который негативно влияет на качество семян и может привести к полной потере их жизнеспособности. В обзоре обобщены сведения о биохимических процессах, влияющих на продолжительность жизни семян. Проанализированы данные о деструктивном действии свободных радикалов по отношению к макромолекулам клетки растения и пути устранения избыточного количества АФК в растениях, наиболее важным из которых является аскорбат-глутатионовый путь. Рассматривается вопрос взаимосвязи периода покоя и длительности сохранения семян. В исследованиях на семенах разных видов растений была выявлена отрицательная корреляция между периодом покоя и долголетием семян, тогда как в работах с семенами Arabidopsis различные авторы выявили как положительную корреляцию между периодом покоя и длительностью сохранения семян, так и отрицательную. Отрицательная корреляция между периодом покоя и жизнеспособностью, вероятно, свидетельствует о способности семян адаптироваться к изменяющимся условиям окружающей среды. Нами проанализирована информация по генам Arabidopsis, связанным с жизнеспособностью семян. В настоящее время выделено значительное количество локусов и генов, влияющих на долголетие семян. Статья знакомит с современными исследованиями жизнеспособности семян ячменя. Локусы количественных признаков (QTL), связанные с долголетием семян ячменя, были определены на хромосомах 2Н, 5Н и 7Н. В изученных областях QTL выявлены гены Zeo1, Ale, nud, nadp-me и HvGR. Однако вопрос о том, какие гены являются маркерами жизнеспособности семян растений определенного вида, остается открытым.
Ключевые слова
Об авторах
Н. А. ШвачкоРоссия
Санкт-Петербург
Е. К. Хлесткина
Россия
Санкт-Петербург
Список литературы
1. Agacka-Mołdoch M., Rehman A.M.A., Lohwasser U., Doroszewska T., Qualset C.O., Börner A. The inheritance of wheat grain longevity: a comparison between induced and natural ageing. J. Appl. Genet. 2016;57(4):477-481. DOI 10.1007/s13353-016-0348-3.
2. Antonova K., Vikhnina M., SobolevaA., MehmoodT., Heymich M., Leonova T., Bankin M., Lukasheva E., Gensberger-Reigl S., Medvedev S., Smolikova G., Pischetsrieder M., Frolov A. Analysis of chemically labile glycation adducts in seed proteins: case study of methylglyoxal-derived hydroimidazolone 1 (MG-H1). Int. J. Mol. Sci. 2019;20(15):3659. DOI 10.3390/ijms20153659.
3. Bahin E., Bailly C., Sotta B., Kranner I., Corbineau F., Leymaruie J. Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant Cell Environ. 2011;34(6):980-993. DOI 10.1111/j.1365-3040.2011.02298.x.
4. Bailly C. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 2004;142:93-107. DOI 10.1079/SSR2004159.
5. Bailly C., Kranner I. Analyses of reactive oxygen species and antioxidants in relation to seed longevity and germination. In: Kermode A.R. (Ed.). Seed Dormancy: Methods and Protocols. Humana Press, 2011;343-367. DOI 10.1007/978-1-61779-231-1_20.
6. Bankin M.P., Bilova T.E., Dubovskaya A.G., Gavrilova V.A., Frolov A.A., Smolikova G.N., Medvedev S.S. Biochemical changes induced in Brassica napus L. seeds after longstorage and accelerated aging. In: Abstract Book for the Plant Biology Europe Conference in Copenhagen, 18–21 June 2018. Copenhagen, 2018;161.
7. Baskin J.M., Baskin C.C. A classification system for seed dormancy. Seed Sci. Res. 2007;14:1-16. DOI 10.1079/SSR2003150.
8. Bentsink L., Jowett J., Hanhart C.J., Koornneef M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2006;103(45):17042- 17047. DOI 10.1073/pnas.0607877103.
9. Bewley J.D., Bradford K.J., Hilhorst H.W.M., Nonogaki H. Seeds: Physiology of Development, Germination and Dormancy. 3rd edn. Springer, New York, 2013. DOI 10.1007/978-1-4614-4693-4.
10. Clerkx E.J.M., Blankestijn-de Vries H., Ruys G.J., Groot S.P.C., Koornneef M. Genetic differences in seed longevity of various Arabidopsis mutants. Physiol. Plant. 2004;121(3):448-461. DOI 10.1111/j.0031-9317.2004.00339.x.
11. Debeaujon I., Léon-Kloosterziel K.M., Koornneef M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 2000;122(2):403-414. DOI 10.1104/pp.122.2.403.
12. Dekkers B.J.W., Costa M.C.D., Maia J., Bentsink L., Ligterink W., Hilhorst H.W.M. Acquisition and loss of desiccation tolerance in seeds: from experimental model to biological relevance. Planta. 2015;241:563-577. DOI 10.1007/s00425-014-2240-x.
13. de Souza Vidigal D., Willems L., van Arkel J., Dekkers B.J.W., Hilhorst H.W.M., Bentsink L. Galactinol as marker for seed longevity. Plant Sci. 2016;246:112-118. DOI 10.1016/j.plantsci.2016.02.015.
14. Eshdat Y., Holland D., Faltin Z., Ben-Hayyim G. Plant glutathione peroxidases. Physiol. Plant. 1997;100(2):234-240. DOI 10.1111/j.1399-3054.1997.tb04779.x.
15. Foyer C., Noctor G. Oxidant and antioxidant signaling in plants: a re-evalution of the concept of oxidative stress in a physiological context. Plant Cell Environ. 2005;28:1056-1071. DOI 10.1111/j.1365-3040.2005.01327.x.
16. Frolov A., Mamontova T., Ihling C., Lukasheva E., Bankin M., Chantseva V., Vikhnina M., Soboleva A., Shumilina J., Mavropolo-Stolyarenko G., Grishina T., Osmolovskaya N., Zhukov V., Hoehenwarter W., Sinz A., Tikhononovich I., Wessjohann L., Bilova T., Smolikova G., Medvedev S. Mining seed proteome: from protein dynamics to modification profiles. Bio. Comm. 2018;63:43-58. DOI 10.21638/spbu03.2018.106.
17. Jajic I., Sarna T., Strzalka K. Senescence, stress, and reactive oxygen species. Plants. 2015;4:393-411. DOI 10.3390/plants4030393.
18. Jeevan Kumar S.P., Rajendra Prasad S., Banerjee R., Thammineni C. Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann. Bot. 2015;116(4):663-668. DOI 10.1093/aob/mcv098.
19. Khan M.M., Hendry G.A.F., Atherton N.M., Vertucci-Walters C.W. Free radical accumulation and lipid peroxidation in testas of rapidly aged soybean seeds: a light-promoted process. Seed Sci. Res. 1996; 6(03):101-106. DOI 10.1017/S0960258500003123.
20. Kong L., Huo H., Mao P. Antioxidant response and related gene expression in aged oat seed. Front. Plant Sci. 2015;6:158. DOI 10.3389/fpls.2015.00158.
21. Available at: https://www.frontiersin. org/articles/10.3389/fpls.2015.00158/full Kranner I., Birtić S., Anderson K.M., Pritchard H.W. Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radic. Biol. Med. 2006; 40(12):2155-2165. DOI 10.1016/j.freeradbiomed.2006.02.013.
22. Landjeva S., Lohwasser U., Börner A. Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth. Euphytica. 2010; 171(1):129-143. DOI 10.1007/s10681-009-0016-3.
23. Landry L.G., Chapple C., Last R.L. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol. 1995;109(4):1159-1166. DOI 10.1104/pp.109.4.1159.
24. Lee B., Lee H., Xiong L., Zhu J.-K. A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell. 2002;14(6):1235-1251. DOI 10.1105/tpc.010433.
25. Li D., Pritchard H.W. The science and economics of ex situ plant conservation. Trends Plant Sci. 2009;14(11):614-621. DOI 10.1016/j.tplants.2009.09.005.
26. Loskutov I.G. The History of the World Collection of Plant Genetic Resources in Russia. St. Petersburg, 2009. (in Russian)
27. McDonald M.B. Seed deterioration: physiology, repair and assessment. Seed Sci. Technol. 1999;27:177-237.
28. Medvedev S.S. Plant Physiology. St. Petersburg, 2013. (in Russian)
29. Meyer A.J., Hell R. Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth. Res. 2005;86(3):435-457. DOI 10.1007/s11120-005-8425-1.
30. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405-410. DOI 10.1016/S1360-1385(02)02312-9.
31. Miura K., Lin S., Yano M., Nagamine T. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor. Appl. Genet. 2002;104(6):981-986. DOI 10.1007/s00122-002-0872-x.
32. Murthy U.M.N., Kumar P.P., Sun W.Q. Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. J. Exp. Bot. 2003;54(384):1057-1067. DOI 10.1093/jxb/erg092.
33. Nagel M., Alqudah A.M., Bailly M., Rajjou L., Pistrick S., Matzig G., Borner A., Kranner I. Novel loci and a role for nitric oxide for seed dormancy and preharvest sprouting in barley. Plant Cell Environ. 2019;42(4):1318-1327. DOI 10.1111/pce.13483.
34. Nagel M., Börner A. The longevity of crop seeds stored under ambient conditions. Seed Sci. Res. 2010;20:1-12. DOI 10.1017/S0960258509990213.
35. Nagel M., Kodde J., Pistrick S., Mascher M., BörnerA., Groot S.P.C. Barley seed aging: genetics behind the dry elevated pressure of oxygen aging and moist controlled deterioration. Front. Plant Sci. 2016;7:1-11. DOI 10.3389/fpls.2016.00388.
36. Nagel M., Kranner I., Neumann K., Rolletschek H., Seal C.E., Colville L., Fernandez-Marin B., Borner A. Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. Plant Cell Environ. 2015;38(6):1011-1022. DOI 10.1111/pce.12474.
37. Nagel M., Vogel H., Landjeva S., Buck-Sorlin G., Lohwasser U., Scholz U., Börner A. Seed conservation in ex situ genebanks – genetic studies on longevity in barley. Euphytica. 2009;170(1-2): 5-14. DOI 10.1007/s10681-009-9975-7.
38. Nguyen T.P., Keizer P., van Eeuwijk F., Smeekens S., Bentsink L. Natural variation for seed longevity and seed dormancy are negatively correlated in Arabidopsis. Plant Physiol. 2012;160(4): 2083-2092. DOI 10.1104/pp.112.206649.
39. Nikolaeva M.G. Dormancy of seeds. In: The Physiology of Seeds. Moscow, 1982. (in Russian)
40. Nikolaeva M.G. Patterns of seed dormancy and germination as related to plant phylogeny and ecological and geographical conditions of their habitats. Russ. J. Plant Physiol. 1999;46:369-373.
41. Noctor G., Queval G., Mhamdi A., Chaouch S., Foyer C.H. Glutathione. The Arabidopsis Book. 2011;9(1):1-32. DOI 10.1199/tab.0142.
42. Nonogaki H. Seed biology updates – highlights and new discoveries in seed dormancy and germination research. Front. Plant Sci. 2017;8:1-16. DOI 10.3389/fpls.2017.00524.
43. Obendorf R.L. Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Sci. Res. 1997;7(2):63-74. DOI 10.1017/S096025850000341X.
44. Ooms J., Leon-Kloosterziel K.M., Bartels D., Koornneef M., Karssen C.M. Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana (a comparative study using abscisic acid-insensitive abi3 mutants). Plant Physiol. 1993;102(4): 1185-1191. DOI 10.1104/pp.102.4.1185.
45. Oracz K., El-Maarouf-Bouteau H., Kranner I., Bogatek R., Corbineau F., Bailly C. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol. 2009;150(1):494-505. DOI 10.1104/pp.109.138107.
46. Ponquett R.T., Smith M.T., Ross G. Lipid autoxidation and seed ageing: putative relationships between seed longevity and lipid stability. Seed Sci. Res. 1992;2(1):51-54. DOI 10.1017/S0960258500001100.
47. Priestley D.A., Cullinan V.I., Wolee J. Differences in seed longevity at the species level. Plant Cell Environ. 1985;8(8):557-562. DOI 10.1111/j.1365-3040.1985.tb01693.x.
48. Rajjou L., Debeaujon I. Seed longevity: survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biologies. 2008;331:796-805. DOI 10.1016/j.crvi.2008.07.021.
49. Raz V., Bergervoet J.H., Koornneef M. Sequential steps for developmental arrest in Arabidopsis seeds. Development. 2001; 128(2):243-252.
50. Rehman Arif M.A., Börner A. Mapping of QTL associated with seed longevity in durum wheat (Triticum durum Desf.). J. Appl. Genet. 2019; 60(1):33-36. DOI 10.1007/s13353-018-0477-y.
51. Rehman Arif M.A., Nagel M., Lohwasser U., Börner A. Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.). J. Biosci. 2017;42(1):81-89. DOI 10.1007/s12038-016-9661-6.
52. Revilla P., Butron A., Rodriguez V.M., Malvar R.A., Ordas A. Identification of genes related to germination in aged maize seed by screening natural variability. J. Exp. Bot. 2009;60(14):4151- 4157. DOI 10.1093/jxb/erp249.
53. Rouhier N., Lemaire S.D., Jacquot J. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu. Rev. Plant Biol. 2008;59(1):143-166. DOI 10.1146/annurev.arplant.59.032607.092811.
54. Safina G.F., Filipenko G.I. Longevity of seeds at storage and its prediction by the accelerated ageing method. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2013;174:123-130. (in Russian)
55. Sattler S.E., Gilliland L.U., Magallanes-Lundback M., Pollard M., DellaPenna D. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell. 2004;16(6):1419-1432. DOI 10.1105/tpc.021360.
56. Scandalios J.G., Lingqiang G., Polidoros A.N. Catalases in plants: gene structure, properties, regulation, and expression. In: Oxidative Stress and the Molecular Biology of Antioxidant Defenses. 1997;343-406. DOI 10.1101/087969502.34.343.
57. Schafer F.Q., Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001;30(11):1191-1212. DOI 10.1016/S0891-5849(01)00480-4.
58. Schmidt L.H. Guide to Handling of Tropical and Subtropical Forest Seed. Danida Forest Seed Centre, 2000.
59. Schwember A.R., Bradford K.J. Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. J. Exp. Bot. 2010;61(15):4423- 4436. DOI 10.1093/jxb/erq248.
60. Sharova E.I. Plant Antioxidants. St. Petersburg, 2016. (in Russian)
61. Silaeva O.I. Storage of seeds collection of the world’s plant resources in conditions low positive temperatures – assessment, status, prospects. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2012;169:230-239. (in Russian)
62. Sliwinska E., Bewley J.D. Overview of seed development, anatomy and morphology. In: Gallagher R.S. (Ed.). Seeds: The Ecology of Regeneration in Plant Communities. 3rd edn. CAB International, 2014;1-17. DOI 10.1079/9781780641836.000.
63. Smolikova G.N. Application of the method of accelerated aging to evaluate the stress tolerance of seeds. Vestnik Sankt-Peterburgskogo Gosudarstvennogo Universiteta. Seriya 3: Bilogiya = Bulletin of St. Petersburg State University. Ser. 3: Biology. 2014;2: 82-93. Available at: https://biocomm.spbu.ru/article/view/1138/992 (in Russian)
64. Veselovsky V.A., Veselova T.V. Lipid peroxidation, carbohydrate hydrolysis, and Amadori–Maillard reaction at early stages of dry seed aging. Russ. J. Plant Physiol. 2012;59(6):811-817.
65. Walters C. Understanding the mechanisms and kinetics of seed aging. Seed Sci. Res. 1998;8(2):223-244. DOI 10.1017/S096025850000413X.
66. Walters C. Orthodoxy, recalcitrance and inbetween: describing variation in seed storage characteristics using threshold responses to water loss. Planta. 2015;242:397-406. DOI 10.1007/s00425-015-2312-6.
67. Walters C., Hill L.M., Wheeler L.J. Dying while dry: kinetics and mechanisms of deterioration in desiccated organisms. Integr. Comp. Biol. 2005;45(5):751-758. DOI 10.1093/icb/45.5.751.
68. Waterworth W.M., Drury G.E., Bray C.M., West C.E. Repairing breaks in the plant genome: the importance of keeping it together. New Phytol. 2011;192(4):805-822. DOI 10.1111/j.1469-8137.2011.03926.x.
69. Wettlaufer S.H., Leopold A.C. Relevance of Amadori and Maillard products to seed deterioration. Plant Physiol. 1991;97(1):165- 169. DOI 10.1104/pp.97.1.165.
70. Willekens H., Inzé D., Van Montagu M., van Camp W. Catalases in plants. Mol. Breeding. 1995;1(3):207-228. DOI 10.1007/BF02277422.
71. Wojtyla K., Lechovska K., Kubala S., Garnczarska M. Different modes of hydrogen peroxide action during seed germination. Front. Plant Sci. 2016;7:1-16. DOI 10.3389/fpls.2016.00066.
72. Wozny D., Kramer K., Finkemeier I., Acosta I.F., Koornneef M. Genes for seed longevity in barley identified by genomic analysis on near isogenic lines. Plant Cell Environ. 2018;41(8):1895- 1911. DOI 10.1111/pce.13330.
73. Yazdanpanah F., Maurino V.G., Mettler-Altmann T., Buijs G., Bailly M., Karimi Jashni M., Willems L., Sergeeva L.I., Rajjou L., Hilhorst H.W.M., Bentsink L. NADP-MALIC ENZYME 1 affects germination after seed storage in Arabidopsis thaliana. Plant Cell Physiol. 2019;60(2):318-328. DOI 10.1093/pcp/pcy213.