1. Barker M.S., Husband B.C., Pires J.C. Spreading winge and flying high: the evolutionary importance of polyploidy after a century of study. Am. J. Bot. 2016;103(7):17. https://doi.org/10.3732/ajb.1600272.
2. Bugrov A.G., Karamysheva T.V., Perepelov E.A., Elisaphenko E.A., Rubtsov D.N., Warchalowska-Sliwa E., Tatsuta H., Rubtsov N.B. DNA content of the B chromosomes in grasshopper Podisma kanoi Storozh. (Orthoptera, Acrididae). Chromosome Res. 2007;15(3): 315326. https://doi.org/10.1007/s105770071128z.
3. Comparative Genomics. Sankoff D., Nadeau J.H. (Eds.). Kluwer Academic Publ., 2000. https://doi.org/10.1007/9789401143097.
4. Dehal P., Boore J.L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3:e314. https://doi.org/10.1371/journal.pbio.0030314.
5. Egger B., Ishida S. Chromosome fission or duplication in Macrostomum lignano (Macrostomorpha, Plathelminthes) - remarks on chromosome numbers in ‘archoophoran turbellarians’. J. Zool. Syst. Evol. Res. 2005;43(2):127-132. https://doi.org/10.1111/j.14390469.2005.00300.x.
6. Fisher K.J., Buskirk S.W., Vignogna R.C., Marad D.A., Lang G.I. Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae. PLoS Genet. 2018;14(5):e1007396. https://doi.org/https//doi.org/10.1371/journal.pgen.1007396.
7. Glasauer S.M.K., Neuhauss S.C.F. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genomics. 2014;289(6):10451060. https://doi.org/10.1007/s0043801408892.
8. Kenny N.J., Chan K.W., Nong W., Qu Z., Maeso I., Yip H.Y., Chan T.F., Kwan H.S., Holland P.W.H., Chu K.H., Hui J.H.L. Ancestral wholegenome duplication in the marine chelicerate horseshoe crabs. Heredity. 2018;116(2):190199. https://doi.org/10.1038/hdy.2015.89.
9. Makunin A.I., Rajičić M., Karamysheva T.V., Romanenko S.A., Druzhkova A.S., Blagojević J., Vujošević M., Rubtsov N.B., Graphodatsky A.S., Trifonov V.A. Low-pass single-chromosome sequencing of human small supernumerary marker chromosomes (sSMCs) and Apodemus B chromosomes. Chromosoma. 2018;127(3):301-311. https://doi.org/10.1007/s0041201806620.
10. Mayrose I., Zhan S.H., Rothfels C.J., Magnuson-Ford K., Barker M.S., Rieseberg L.H., Otto S.P. Recently formed polyploid plants diversify at lower rates. Science. 2011;60(333):1257. https://doi.org/10.1126/science.1207205.
11. Moghe G.D., Hufnagel D.E., Tang H., Xiao Y., Dworkin I., Town C.T., Conner J.K., Shiu S.-H. Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish Raphanus raphanistrum and three other Brassicaceae species. Plant Cell. 2014;26(5):19251937. https://doi.org/10.1105/tpc.114.124297.
12. Panopoulou G., Hennig S., Groth D., Krause A., Poustka A.J., Herwig R., Vingron M., Lehrach H. New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res. 2003;13:1056-1066. https://doi.org/10.1101/gr.874803.
13. Schärer L., Brand J.N., Singh P., Zadesenets K.S., Stelzer C.P., Viktorin G. A phylogenetically informed search for an alternative Macrostomum model species with notes on taxonomy, mating behavior, karyology, and genome size. J. Zool. Syst. Evol. Res. 2020;58:41-65. https://doi.org/10.1111/jzs.12344.
14. Soltis D.E., Segovia-Salcedo M.C., Jordon-Thaden I., Majure L.C., Miles N.M., Mavrodiev E.V., Mei W., Cortez M.B., Soltis P.S., Gitzendanner M.A. Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. New Phytol. 2014; 202(4):11051117. https://doi.org/10.1111/nph.12756.
15. Wendel J.F. Genome evolution in polyploids. Plant Mol. Biol. 2000;42: 225249. https://doi.org/10.1023/A:1006392424384.
16. Zadesenets K.S., Ershov N.I., Berezikov E., Rubtsov N.B. Chromosome evolution in the freeliving flatworms: first evidence of intrachromosomal rearrangements in karyotype evolution of Macrostomum lignano (Platyhelminthes, Macrostomida). Genes. 2017a;8:298. https://doi.org/10.3390/genes8110298.
17. Zadesenets K.S., Ershov N.I., Rubtsov N.B. Whole-genome sequencing of eukaryotes: from sequencing of DNA fragments to a genome assembly. Russ. J. Genet. 2017b;53(6):631-639. https://doi.org/10.1134/S102279541705012X.
18. Zadesenets K.S., Jetybayev I.Y., Schärer L., Rubtsov N.B. Genome and karyotype reorganization after whole genome duplication in freeliving flatworms of the genus Macrostomum. Int. J. Mol. Sci. 2020; 21:680. https://doi.org/10.3390/ijms21020680.
19. Zadesenets K.S., Rubtsov N.B. Genome duplication in animal evolution. Russ. J. Genet. 2018;54(10):1125-1136. https://doi.org/10.1134/S1022795418090168.
20. Zadesenets K.S., Rubtsov N.B. Generation of microdissected DNA probes from metaphase chromosomes in case of an impossibility of chromosomes identification by routine staining. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(5)519524. https://doi.org/10.18699/VJ20.46o.
21. Zadesenets K.S., Schӓrer L., Rubtsov N.B. New insights into the karyotype evolution of the freeliving flatworm Macrostomum lignano (Platyhelminthes, Turbellaria). Sci. Rep. 2017c;7:6066. https://doi.org/10.1038/s41598017064980.
22. Zadesenets K.S., Vizoso D.B., Schlatter A., Konopatskaia I.D., Berezikov E., Schärer L., Rubtsov N.B. Evidence for karyotype polymorphism in the freeliving flatworm, Macrostomum lignano, a model organism for evolutionary and developmental biology. PLoS One. 2016;11:e0164915. https://doi.org/10.1371/journal.pone.0164915.