Candidate SNP-markers altering TBP binding affinity for promoters of the Y-linked genes CDY2A, SHOX, and ZFY are lowering many indexes of reproductive potential in men
https://doi.org/10.18699/VJ20.674
Abstract
Reproductive potential is the most important conditional indicator reflecting the ability of individuals in a population to reproduce, survive and develop under optimal environmental conditions. As for humans, the concept of reproductive potential can include the level of the individual’s mental and physical state, which allows them to reproduce healthy offspring when they reach social and physical maturity. Female reproductive potential has been investigated in great detail, whereas the male reproductive potential (MRP) has not received the equal amount of attention as yet. Therefore, here we focused on the human Y chromosome and found candidate single-nucleotide polymorphism (SNP) markers of MRP. With our development named Web-service SNP_TATA_Z-tester, we examined in silico all 35 unannotated SNPs within 70-bp proximal promoters of the three Y-linked genes, CDY2A, SHOX and ZFY, which represent all types of human Y-chromosome genes, namely: unique, pseudo-autosomal, and human X-chromosome gene paralogs, respectively. As a result, we found 11 candidate SNP markers for MRP, which can significantly alter the TATA-binding protein (TBP) binding affinity for promoters of these genes. First of all, we selectively verified in vitro the values of the TBP-promoter affinity under this study, Pearson’s linear correlation between predicted and measured values of which were r = 0.94 (significance p < 0.005). Next, as a discussion, using keyword search tools of the PubMed database, we found clinically proven physiological markers of human pathologies, which correspond to a change in the expression of the genes carrying the candidate SNP markers predicted here. These were markers for spermatogenesis disorders (ZFY: rs1388535808 and rs996955491), for male maturation arrest (CDY2A: rs200670724) as well as for disproportionate short stature at Madelung deformity (e. g., SHOX: rs1452787381) and even for embryogenesis disorders (e. g., SHOX: rs28378830). This indicates a wide range of MRI indicators, alterations in which should be expected in the case of SNPs in the promoters of the human Y-chromosome genes and which can go far beyond changes in male fertility.
About the Authors
M. P. PonomarenkoRussian Federation
Novosibirsk
E. B. Sharypova
Russian Federation
Novosibirsk
I. A. Drachkova
Russian Federation
Novosibirsk
L. K. Savinkova
Russian Federation
Novosibirsk
I. V. Chadaeva
Russian Federation
Novosibirsk
D. A. Rasskazov
Russian Federation
Novosibirsk
P. M. Ponomarenko
Russian Federation
Novosibirsk
L. V. Osadchuk
Russian Federation
Novosibirsk
A. V. Osadchuk
Russian Federation
Novosibirsk
References
1. Amberger J., Bocchini C., Schiettecatte F., Scott A., Hamosh A. OMIM. org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43(D1):D789-D798. DOI 10.1093/nar/gku1205.
2. Arkova O.V., Ponomarenko M.P., Rasskazov D.A., Drachkova I.A., Arshinova T.V., Ponomarenko P.M., Savinkova L.K., Kolchanov N.A. Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters. BMC Genomics. 2015;16(Suppl. 13):S5. DOI 10.1186/1471-2164-16-S13-S5.
3. Axelsson J., Bonde J.P., Giwercman Y.L., Rylander L., Giwercman A. Gene-environment interaction and male reproductive function. Asian J. Androl. 2010;12(3):298-307. DOI 10.1038/aja.2010.16.
4. Bellott D.W., Hughes J.F., Skaletsky H., Brown L.G., Pyntikova T., Cho T.-J., Koutseva N., Zaghlul S., Graves T., Rock S., Kremitzki C., Fulton R.S., Dugan S., Ding Y., Morton D., Khan Z., Lewis L., Buhay C., Wang Q., Watt J., Holder M., Lee S., Nazareth L., Alfoldi J., Rozen S., Muzny D.M., Warren W.C., Gibbs R.A., Wilson R.K., Page D.C. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature. 2014;508(7497):494-499. DOI 10.1038/nature13206.
5. Bowles J.T. The evolution of aging: a new approach to an old problem of biology. Med. Hypotheses. 1998;51(3):179-221. DOI 10.1016/s0306-9877(98)90079-2.
6. Brosens E., de Jong E., Barakat T., Eussen B., D’Haene B., De Baere E., Verdin H., Poddighe P., Galjaard R., Gribnau J., Brooks A., Tibboel D., de Klein A. Structural and numerical changes of chromosome X in patients with esophageal atresia. Eur. J. Hum. Genet. 2014;22:1077-1084. DOI 10.1038/ejhg.2013.295.
7. Chadaeva I.V., Ponomarenko M.P., Rasskazov D.A., Sharypova E.B., Kashina E.V., Matveeva M.Yu., Arshinova T.V., Ponomarenko P.M., Arkova O.V., Bondar N.P., Savinkova L.K., Kolchanov N.A. Candidate SNP markers of aggressiveness-related complications and comorbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics. 2016;17(Suppl. 14):995. DOI 10.1186/s12864-016-3353-3.
8. Chadaeva I., Ponomarenko P., Rasskazov D., Sharypova E., Kashina E., Zhechev D., Drachkova I., Arkova O., Savinkova L., Ponomarenko M., Kolchanov N., Osadchuk L., Osadchuk A. Candidate SNP markers of reproductive potential are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics. 2018;19(Suppl. 3):19. DOI 10.1186/s12864-018-4478-3.
9. Chadaeva I., Ponomarenko P., Rasskazov D., Sharypova E., Kashina E., Kleshchev M., Ponomarenko M., Naumenko V., Savinkova L., Kolchanov N., Osadchuk L., Osadchuk A. Natural selection equally supports the human tendencies in subordination and domination: a genome-wide study with in silico confirmation and in vivo validation in mice. Front. Genet. 2019;10:73. DOI 10.3389/fgene.2019.00073.
10. Chapman R.N. Animal Ecology with Special Reference to Insects. N. Y.; London: McGraw-Hill Book Co Inc, 1931. Coleman R., Taggart A., Benjamin L., Pugh B. Dimerization of the TATA binding protein. J. Biol. Chem. 1995;270:13842-13849.
11. Cunningham F., Achuthan P., Akanni W., Allen J., Amode M., Armean I., Bennett R., Bhai J., Billis K., Boddu S., Cummins C., Davidson C., Dodiya K., Gall A., Giron C., Gil L., Grego T., Haggerty L., Haskell E., Hourlier T., Izuogu O., Janacek S., Juettemann T., Kay M., Laird M., Lavidas I., Liu Z., Loveland J., Marugan J., Maurel T., McMahon A., Moore B., Morales J., Mudge J., Nuhn M., Ogeh D., Parker A., Parton A., Patricio M., Abdul Salam A., Schmitt B., Schuilenburg H., Sheppard D., Sparrow H., Stapleton E., Szuba M., Taylor K., Threadgold G., Thormann A., Vullo A., Walts B., Winterbottom A., Zadissa A., Chakiachvili M., Frankish A., Hunt S., Kostadima M., Langridge N., Martin F., Muffato M., Perry E., Ruffier M., Staines D., Trevanion S., Aken B., Yates A., Zerbino D., Flicek P. Ensembl 2019. Nucleic Acids Res. 2019;47(D1):D745-D751. DOI 10.1093/nar/gky1113.
12. Drachkova I.A., Lysova M.V., Repkova M.N., Prokuda O.V., Sokolenko A.A., Arshinova T.V., Kobzev V.F., Iamkovoĭ V.I., Savinkova L.K. Interaction of proteins from general transcription complex RNA polymerase II with oligoribonucleotides. Mol. Biol. (Mosk). 2005;39(1):139-146.
13. Haeussler M., Raney B.J., Hinrichs A.S., Clawson H., Zweig A.S., Karolchik D., Casper J., Speir M.L., Haussler D., Kent W.J. Navigating protected genomics data with UCSC Genome Browser in a box. Bioinformatics. 2015;31(5):764-766. DOI 10.1093/bioinformatics/btu712.
14. Haldane J.B.S. The cost of natural selection. J. Genet. 1957;55:511-524. DOI 10.1007/BF02984069.
15. Jan S.Z., Jongejan A., Korver C.M., van Daalen S.K.M., van Pelt A.M.M., Repping S., Hamer G. Distinct prophase arrest mechanisms in human male meiosis. Development. 2018;145(16):dev160614. DOI 10.1242/dev.160614.
16. Kimura M. Evolutionary rate at the molecular level. Nature. 1968; 217(5129):624-626. DOI 10.1038/217624a0.
17. Lu Z. PubMed and beyond: a survey of web tools for searching biomedical literature. Database (Oxford). 2011;2011:baq036. DOI 10.1093/database/baq036.
18. Martianov I., Viville S., Davidson I. RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science. 2002; 298(5595):1036-1039. DOI 10.1126/science.1076327.
19. Mitsuyasu H., Izuhara K., Mao X., Gao P., Arinobu Y., Enomoto T., Kawai M., Sasaki S., Dake Y., Hamasaki N., Shirakawa T., Hopkin J. Ile50Val variant of IL4R-alpha upregulates IgE synthesis and associates with atopic asthma. Nat. Genet. 1998;19:119-120. DOI 10.1038/472.
20. Mogno I., Vallania F., Mitra R.D., Cohen B.A. TATA is a modular component of synthetic promoters. Genome Res. 2010;20(10):1391-1397. DOI 10.1101/gr.106732.110.
21. Peterson M.G., Tanese N., Pugh B.F., Tjian R. Functional domains and upstream activation properties of cloned human TATA binding protein. Science. 1990;248(4963):1625-1630.
22. Pianka E.R. Natural selection of optimal reproductive tactics. Am. Zool. 1976;16(4):775-784. www.jstor.org/stable/3882142.
23. Pocai B. The ICD-11 has been adopted by the World Health Assembly. World Psychiatry. 2019;18(3):371-372. DOI 10.1002/wps.20689.
24. Ponomarenko M., Arkova O., Rasskazov D., Ponomarenko P., Savinkova L., Kolchanov N. Candidate SNP markers of gender-biased autoimmune complications of monogenic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. Front. Immunol. 2016;7:130. DOI 10.3389/fimmu.2016.00130.
25. Ponomarenko M., Mironova V., Gunbin K., Savinkova L. Hogness Box. In: Maloy S., Hughes K. (Eds.). Brenner’s Encyclopedia of Genetics. 2nd edn. San Diego: Academic Press, Elsevier Inc. 2013;3: 491-494. DOI 10.1016/B978-0-12-374984-0.00720-8.
26. Ponomarenko M., Rasskazov D., Arkova O., Ponomarenko P., Suslov V., Savinkova L., Kolchanov N. How to use SNP_TATA_Comparator to find a significant change in gene expression caused by the regulatory SNP of this gene’s promoter via a change in affinity of the TATA-binding protein for this promoter. Biomed. Res. Int. 2015; 2015:35983004625. DOI 10.1155/2015/359835.
27. Ponomarenko M., Rasskazov D., Chadaeva I., Sharypova E., Drachkova I., Ponomarenko P., Oshchepkova E., Savinkova L., Kolchanov N. Candidate SNP markers of atherosclerosis that may significantly change the affinity of the TATA-Binding protein for the human gene promoters. Russ. J. Genet. 2019;55(9):1137-1151. DOI 10.1134/s1022795419090114.
28. Ponomarenko M., Rasskazov D., Chadaeva I., Sharypova E., Ponomarenko P., Arkova O., Kashina E., Ivanisenko N., Zhechev D., Savinkova L., Kolchanov N. SNP_TATA_Comparator: genomewide landmarks for preventive personalized medicine. Front. Biosci. (Schol Ed.). 2017;9(2):276-306. DOI 10.2741/S488.
29. Ponomarenko P., Chadaeva I., Rasskazov D., Sharypova E., Kashina E.V., Drachkova I., Zhechev D., Ponomarenko M., Savinkova L., Kolchanov N. Candidate SNP markers of familial and sporadic Alzheimer’s diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. Front. Aging Neurosci. 2017;9:231. DOI 10.3389/fnagi.2017.00231.
30. Ponomarenko P., Rasskazov D., Suslov V., Sharypova E., Savinkova L., Podkolodnaya O., Podkolodny N., Tverdokhleb N., Chadaeva I., Ponomarenko M., Kolchanov N. Candidate SNP markers of chronopathologies are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BioMed Res. Int. 2016;2016:8642703. DOI 10.1155/2016/8642703.
31. Ponomarenko P., Savinkova L., Drachkova I., Lysova M., Arshinova T., Ponomarenko M., Kolchanov N. A step-by-step model of TBP/TATA box binding allows predicting human hereditary diseases by single nucleotide polymorphism. Dokl. Biochem. Biophys. 2008;419:88-92. DOI 10.1134/S1607672908020117.
32. Pugh B.F. Purification of the human TATA-binding protein, TBP. Methods Mol. Biol. 1995;37:359-367. DOI 10.1385/0-89603-288-4:359.
33. Putlyaeva L.V., Demin D.E., Korneev K.V., Kasyanov A.S., Tatosyan K.A., Kulakovskiy I.V., Kuprash D.V., Schwartz A.M. Potential markers of autoimmune diseases, alleles rs115662534(T) and rs548231435(C), disrupt the binding of transcription factors STAT1 and EBF1 to the regulatory elements of human CD40 gene. Biochemistry (Mosc). 2018;83(12):1534-1542. DOI 10.1134/S0006297918120118.
34. Ramachandrappa S., Kulkarni A., Gandhi H., Ellis C., Hutt R., Roberts L., Hamid R., Papageorghiou A., Mansour S. SHOX haploinsufficiency presenting with isolated short long bones in the second and third trimester. Eur. J. Hum. Genet. 2018;26:350-358. DOI 10.1038/ s41431-017-0080-4. Rhee H., Pugh B. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature. 2012;483(7389):295-301. DOI 10.1038/nature10799.
35. Sharypova E., Drachkova I., Kashina E., Rasskazov D., Ponomarenko P., Ponomarenko M., Kolchanov N., Savinkova L. An experimental study of the effect of rare polymorphisms of human HBB, HBD and F9 promoter TATA boxes on the kinetics of interaction with the TATA-binding protein. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(1):145-152. DOI 10.18699/VJ18.342. (in Russian)
36. Sherry S.T., Ward M.H., Kholodov M., Baker J., Phan L., Smigielski E.M., Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-311. DOI 10.1093/nar/29.1.308.
37. Stahl P., Mielnik A., Barbieri C., Schlegel P., Paduch D. Deletion or underexpression of the Y-chromosome genes CDY2 and HSFY is associated with maturation arrest in American men with nonobstructive azoospermia. Asian J. Androl. 2012;14(5):676-682. DOI 10.1038/aja.2012.55.
38. Stajich J., Block D., Boulez K., Brenner S., Chervitz S., Dagdigian C., Fuellen G., Gilbert J., Korf I., Lapp H., Lehvaslaiho H., Matsalla C., Mungall C., Osborne B., Pocock M., Schattner P., Senger M., Stein L., Stupka E., Wilkinson M., Birney E. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002;12(10):1611-1618. DOI 10.1101/gr.361602.
39. Telenti A., Pierce L.C., Biggs W.H., di Iulio J., Wong E.H., Fabani M.M., Kirkness E.F., Moustafa A., Shah N., Xie C., Brewer-ton S.C., Bulsara N., Garner C., Metzker G., Sandoval E., Perkins B.A., Och F.J., Turpaz Y., Venter J.C. Deep sequencing of 10,000 human genomes. Proc. Natl. Acad. Sci. USA. 2016;113(42):11901-11906. DOI 10.1073/pnas.1613365113.
40. Trovato G.M. Sustainable medical research by effective and comprehensive medical skills: overcoming the frontiers by predictive, preventive and personalized medicine. EPMA J. 2014;5(1):14. DOI 10.1186/1878-5085-5-14.
41. Turnaev I., Rasskazov D., Arkova O., Ponomarenko M., Ponomarenko P., Savinkova L., Kolchanov N. Hypothetical SNP markers that significantly affect the affinity of the TATA-binding protein to VEGFA, ERBB2, IGF1R, FLT1, KDR, and MET oncogene promoters as chemotherapy targets. Mol. Biol. (Mosc). 2016;50(1):161-173. DOI 10.7868/S0026898416010201.
42. Varzari A., Deyneko I.V., Tudor E., Turcan S. Polymorphisms of glutathione S-transferase and methylenetetrahydrofolate reductase genes in Moldavian patients with ulcerative colitis: Genotype-phenotype correlation. Meta Gene. 2016;7:76-82. DOI 10.1016/j.mgene.2015.12.002.
43. Waardenberg A.J., Basset S.D., Bouveret R., Harvey R.P. CompGO: an R package for comparing and visualizing Gene Ontology enrichment differences between DNA binding experiments. BMC Bioinformatics. 2015;16:275.
44. Wu J., Wu M., Li L., Liu Z., Zeng W., Jiang R. dbWGFP: a database and web server of human whole-genome single nucleotide variants and their functional predictions. Database (Oxford). 2016;2016: baw024. DOI 10.1093/database/baw024.
45. Yoo S., Jin C., Jung D., Choi Y., Choi J., Lee W., Lee S., Lee J., Cha S., Kim C., Seok Y., Lee E., Park J. Putative functional variants of XRCC1 identified by RegulomeDB were not associated with lung cancer risk in a Korean population. Cancer Genet. 2015;208(1-2): 19-24. DOI 10.1016/j.cancergen.2014.11.004.
46. Zerbino D.R., Wilder S.P., Johnson N., Juettemann T., Flicek P.R. The ensembl regulatory build. Genome Biol. 2015;16(1):56. DOI 10.1186/s13059-015-0621-5.