1. Achard P., Renou J-P., Berthomé R., Harberd N.P., Genschik P. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 2008;18: 656-660. https://doi.org/10.1016/j.cub.2008.04.034.
2. Bickford С.B. Ecophysiology of leaf trichomes. Funct. Plant Biol. 2016;43(9):807-814. Available at: https://digital.kenyon.edu/biology_publications/85.
3. Cao X., Jiang F., Wang X., Zang Y., Wu Z. Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage. Euphytica. 2015;205:569-584. https://doi.org/10.1007/s10681-0151433-0.
4. Dobrovolskaya O.B., Pshenichnikova T.A., Arbuzova V.S., Lohwasser U., Röder M.S., Börner A. Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica. 2007;155(3):285-293. https://doi.org/10.1007/s10681-006-9329-7.
5. Doroshkov A.V., Afonnikov D.A., Dobrovolskaya O.B., Pshenichnikova T.A. Interactions between leaf pubescence genes in bread wheat as assessed by high throughput phenotyping. Euphytica. 2016;207: 491-500. https://doi.org/10.1007/s10681-015-1520-2.
6. Doroshkov A.V., Pshenichnikova T.A., Afonnikov D.A. Morphological and genetic characteristics of leaf hairiness in wheat (Triticum aestivum L.) as analyzed by computer aided phenotyping. Russian J. Genet. 2011;47:739-743. https://doi.org/10.1134/S1022795411060093.
7. Ehleringer J., Björkman O., Mooney H. Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub. Science. 1976; 192(4237):376-377. Available at: https://doi.org/10.1126/science.192.4237.376.
8. Foyer C.H., Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011;155: 93-100. https://doi.org/10.1104/pp.110.166181.
9. Gallie D.R. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J. Exp. Bot. 2013; 64(2):433-43. https://doi.org/10.1093/jxb/ers330.
10. Gan Y., Liu C., Yu H., Broun P. Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development. 2007; 134(11):2073-2081. https://doi.org/10.1242/dev.005017.
11. Goltsev V.N., Kalaji H.M., Paunov M., Baba W., Horaczek T., MojskiJ., Kociel H., Allakhverdiev S.I. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ. J. Plant Physiol. 2016;63:869-893. https://doi.org/10.1134/S1021443716050058.
12. Hamaoka N., Yasui H., Yamagata Y., Inoue Y., Furuya N., Araki T., Ueno O., Yoshimura A. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice. Rice. 2017;10(1):20. https://doi.org/10.1186/s12284-017-0158-1.
13. Hammer O., Harper D.A.T., Ryan P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
14. Ilyina L.G. Breeding of spring bread wheat in southeastern regions. Saratov: Saratov University Publ., 1989. (in Russian)
15. Ishikawa T., Shigeoka S. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci. Biotechnol. Biochem. 2008;72:11431154. https://doi.org/10.1271/bbb.80062.
16. Karabourniotis G., Liakopoulos G., Nikolopoulos D., Bresta P. Protective and defensive roles of non-glandular trichomes against multiple stresses: structure-function coordination. J. For. Res. 2020;31:1-12. https://doi.org/10.1007/s11676-019-01034-4.
17. Konrad W., Burkhardt J., Ebner M., Roth-Nebelsick A. Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology. 2015;8:480-492. https://doi.org/10.1002/eco.1518.
18. Lichtenthaler H.K., Buschmann C., Knapp M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio Rfd of leaves with the PAM fluorometer. Photosynthetica. 2005;43:379-393. https://doi.org/10.1007/s11099-005-0062-6.
19. Maistrenko O.I. Identification and localization of genes controlling leaf pubescence of young common wheat plants. Russian J. Genet. 1976; 12(1):5-15.
20. Osipova S., Permyakov A., Permyakova M., Pshenichnikova T., Verkhoturov V., Rudikovsky A., Rudikovskaya E., Shishparenok A., Doroshkov A., Börner A. Regions of the bread wheat D genome associated with variation in key photosynthesis traits and shoot biomass under both well watered and water deficient conditions. J. Appl. Genet. 2016;6:553-559. https://doi.org/10.1007/s13353-015-0315-4.
21. Pattanaik S., Patra B., Singh S.K., Yuan L. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Front. Plant Sci. 2014;5:259. https://doi.org/10.3389/fpls.2014.00259.
22. Pesch M., Hülskamp M. Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Curr. Opin. Genet. Dev. 2004;14:422-427. https://doi.org/10.1016/j.gde.2004.06.007.
23. Pesch M., Hülskamp M. One, two, three... models for trichome patterning in Arabidopsis? Curr. Opin. Plant Biol. 2009;12(5):587-592. https://doi.org/10.1016/j.pbi.2009.07.015.
24. Pshenichnikova T.A., Doroshkov A.V., Osipova S.V., Permyakov A.V., Permyakova M.D., Efimov V.M., Afonnikov D.A. Quantitative characteristics of pubescence in wheat (Triticum aestivum L.) are associated with the parameters of gas exchange and chlorophyll fluorescence under conditions of normal and limited water supply. Planta. 2019;249(3):839-847. https://doi.org/10.1007/s00425-018-3049-9.
25. Pshenichnikova T.A., Doroshkov A.V., Simonov A.V., Afonnikov D.A., Börner A. Diversity of leaf pubescence in bread wheat and relative species. Genet. Resour. Crop Evol. 2017;64:1761-1773. https://doi.org/10.1007/s10722-016-0471-3.
26. Pshenichnikova T.A., Lapochkina I.F., Shchukina L.V. The inheritance of morphological and biochemical traits introgressed into common wheat (Triticum aestivum L.) from Aegilops speltoides Tausch. Genet. Resour. Crop. Evol. 2007;54:287. https://doi.org/10.1007/s10722-0054499-z.
27. Qi T., Huang H., Wu D., Yan, Qi Y., Song S, Xie D. Arabidopsis DELLA and JAZ proteins bind the WD-Repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell. 2014;26(3):1118-1133. https://doi.org/10.1105/tpc.113.121731.
28. Strasser R.J., Tsimilli-Michael M., Sriyastaya A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G.C., Govindjee (Eds.). Chlorophyll a fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration. Springer, Dordrecht, 2004;19:321-362.
29. Taketa S., Chang C.L., Ishii M., Takeda K. Chromosome arm location of the gene controlling leaf pubescence of a Chinese local wheat cultivar ‘Hong-mang-mai’. Euphytica. 2002;125:141-147. https://doi.org/10.1023/A:1015812907111.
30. Tóth S.Z., Schansker G., Garab G. The physiological roles and metabolism of ascorbate in chloroplasts. Physiol. Plant. 2013;148(2): 161-175. https://doi.org/10.1111/ppl.12006.
31. Wang Y., Hou J., Liu H., Li T., Wang K., Hao Ch., Liu H., Zhang X. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. J. Exp. Bot. 2019; 70(5):1497-1511. https://doi.org/10.1093/jxb/erz032.
32. Zhang B., Schrader A. TRANSPARENT TESTA GLABRA 1-dependent regulation of flavonoid biosynthesis. Plants. 2017;6(4):65. https://doi.org/10.3390/plants6040065.