Использование метода бластоцистной комплементации для получения донорских органов в химерных животных
https://doi.org/10.18699/VJ20.690
Аннотация
Сегодня актуальной проблемой в медицине является нехватка органов для трансплантаций. Одна из предполагаемых технологий получения этих органов – выращивание их из клеток человека в организме химерных животных с использованием метода межвидовой бластоцистной комплементации в комбинации с методами геномного редактирования и получения плюрипотентных стволовых клеток. Метод CRISPR/Cas9 позволяет создавать животных для бластоцистной комплементации с так называемыми свободными нишами. Совершенствование методов получения индуцированных плюрипотентных стволовых клеток дает возможность получать донорские клетки человека, способные заселять свободную нишу. Таким образом, с помощью современных технологий можно осуществить межвидовую бластоцистную комплементацию между человеком и другими животными, что в будущем позволит выращивать органы человека внутри химерных животных. Однако на практике для проведения успешной межвидовой бластоцистной комплементации необходимо решить ряд проблем: усовершенствовать методы получения «химер-компетентных клеток», преодолеть специфические межвидовые барьеры, подобрать совместимые стадии развития клеток для инъекции и соответствующего этапа развития эмбриона-реципиента, предотвратить апоптоз донорских клеток, добиться эффективной колонизации донорскими клетками человека организма животного-реципиента. Кроме того, очень важно проанализировать и законодательно урегулировать этические аспекты, возникающие при разработке технологий, связанных с получением химерных организмов с участием клеток человека. Многочисленные исследования направлены на решение этих проблем, а также на поиски новых подходов в создании межвидовых химерных организмов с целью выращивания органов человека для трансплантаций. В настоящем обзоре описаны исторические этапы развития технологии бластоцистной комплементации, детально разобраны методы, лежащие в основе ее современного варианта, и проанализированы достижения, позволяющие приблизиться к возможности выращивания органов человека в химерных животных. Рассмотрены также барьеры и проблемы, мешающие успешному применению данного подхода на практике, и дальнейшие перспективы его развития.
Ключевые слова
Об авторах
Т. И. БабочкинаРоссия
Новосибирск
Л. А. Герлинская
Россия
Новосибирск
М. П. Мошкин
Россия
Новосибирск
Список литературы
1. Aasen T., Raya A., Barrero M.J., Garreta E., Consiglio A., Gonzalez F., Vassena R., Bilić J., Pekarik V., Tiscornia G., Edel M., Boué S., Izpisúa Belmonte J.C. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 2008;26(11):1276-1284. https://doi.org/10.1038/nbt.1503.
2. Allegrucci C., Wu Y.Z., Thurston A., Denning C.N., Priddle H., Mummery C.L., Ward-van Oostwaard D., Andrews P.W., Stojkovic M., Smith N., Parkin T., Jones M.E., Warren G., Yu L., Brena R.M., Plass C., Young L.E. Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Hum. Mol. Genet. 2007;16(10):1253- 1268. https://doi.org/10.1093/hmg/ddm074.
3. Barry C., Schmitz M.T., Jiang P., Schwartz M.P., Duffin B.M., Swanson S., BacherR., Bolin J.M., ElwellA.L., McIntoshB.E., StewartR., Thomson J.A. Species-specific developmental timing is maintained by pluripotent stem cells ex utero. Dev. Biol. 2017;423(2):101-110. https://doi.org/10.1016/j.ydbio.2017.02.002.
4. Benchetrit H., Jaber M., Zayat V., Sebban S., Pushett A., Makedonski K., Zakheim Z., Radwan A., Maoz N., Lasry R., Renous N., Inbar M., Ram O., Kaplan T., Buganim Y. Direct induction of the three pre-implantation blastocyst cell types from fibroblasts. Cell Stem Cell. 2019;24(6):983-994.e7. https://doi.org/10.1016/j.stem.2019.03.018.
5. Betschinger J., Nichols J., Dietmann S., Corrin P.D., Paddison P.J., Smith A. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell. 2013;153(2):335- 347. https://doi.org/10.1016/j.cell.2013.03.012.
6. Boroviak K., Doe B., Banerjee R., Yang F., Bradley A. Chromosome engineering in zygotes with CRISPR/Cas9. Genesis. 2016;54(2): 78-85. https://doi.org/10.1002/dvg.22915.
7. Bourret R., Martinez E., Vialla F., Giquel C., Thonnat-Marin A., De Vos J. Human-animal chimeras: ethical issues about farming chimeric animals bearing human organs. Stem Cell Res. Ther. 2016;7(1): 87. https://doi.org/10.1186/s13287-016-0345-9.
8. Bradley A., Evans M., Kaufman M.H., Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984;309(5965):255-256. https://doi.org/10.1038/309255a0.
9. Carbery I.D., Ji D., Harrington A., Brown V., Weinstein E.J., Liaw L., Cui X. Targeted genome modification in mice using zinc-finger nucleases. Genetics. 2010;186(2):451-459. https://doi.org/10.1534/genetics.110.117002.
10. Chang A.N., Liang Z., Dai H.Q., Chapdelaine-Williams A.M., Andrews N., Bronson R.T., Schwer B., Alt F.W. Neural blastocyst complementation enables mouse forebrain organogenesis. Nature. 2018; 563(7729):126-130. https://doi.org/10.1038/s41586-018-0586-0.
11. Chen J., Lansford R., Stewart V., Young F., Alt F.W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl. Acad. Sci. USA. 1993;90(10):4528- 4532. https://doi.org/10.1073/pnas.90.10.4528.
12. Chen K., Chmait R.H., Vanderbilt D., Wu S., Randolph L. Chimerism in monochorionic dizygotic twins: case study and review. Am. J. Med. Genet. A. 2013;161A(7):1817-1824. https://doi.org/10.1002/ajmg.a.35957.
13. Chen Y., Niu Y., Li Y., Ai Z., Kang Y., Shi H., Xiang Z., Yang Z., Tan T., Si W., Li W., Xia X., Zhou Q., Ji W., Li T. Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell. 2015;17(1):116-124. https://doi.org/10.1016/j.stem.2015.06.004.
14. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819- 823. https://doi.org/10.1126/science.1231143.
15. De Los Angeles A., Elsworth J.D., Redmond D.E. ERK-independent African Green monkey pluripotent stem cells in a putative chimeracompetent state. Biochem. Biophys. Res. Commun. 2019;510(1):78- 84. https://doi.org/10.1016/j.bbrc.2019.01.037.
16. Drexler C., Glock B., Vadon M., Staudacher E., Dauber E.M., Ulrich S., Reisacher B.K., Mayr W.R., Lanzer G., Wagner T. Tetragametic chimerism detected in a healthy woman with mixed-field agglutination reactions in ABO blood grouping. Transfusion. 2005;45(5):698-703. https://doi.org/10.1111/j.1537-2995.2005.04304.x.
17. Dunn S.J., Martello G., Yordanov B., Emmott S., Smith A.G. Defining an essential transcription factor program for naïve pluripotency. Science. 2014;344(6188):1156-1160. https://doi.org/10.1126/science.1248882.
18. Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154-156. https://doi.org/10.1038/292154a.
19. Fang R., Liu K., Zhao Y., Li H., Zhu D., Du Y., Xiang C., Li X., Liu H., Miao Z., Zhang X., Shi Y., Yang W., Xu J., Deng H. Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts. Cell Stem Cell. 2014;15(4):488-497. https://doi.org/10.1016/j.stem.2014.09.004.
20. Farahany N.A., Greely H.T., Hyman S., Koch C., Grady C., Pașca S.P., Sestan N., Arlotta P., Bernat J.L., Ting J., Lunshof J.E., Iyer E., Hyun I., Capestany B.H., Church G.M., Huang H., Song H. The ethics of experimenting with human brain tissue. Nature. 2018; 556(7702):429-432. https://doi.org/10.1038/d41586-018-04813-x.
21. Friel R., van der Sar S., Mee P.J. Embryonic stem cells: understanding their history, cell biology and signalling. Adv. Drug. Deliv. Rev. 2005;57(13):1894-1903. https://doi.org/10.1016/j.addr.2005.08.002.
22. Fu R., Yu D., Ren J., Li C., Wang J., Feng G., Wang X., Wan H., Li T., Wang L., Zhang Y., Hai T., Li W., Zhou Q. Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs. Protein Cell. 2020;11(2):97-107. https://doi.org/10.1007/s13238-019-00676-8.
23. Gafni O., Weinberger L., Mansour A.A., Manor Y.S., Chomsky E., BenYosef D., Kalma Y., Viukov S., Maza I., Zviran A., Rais Y., Shipony Z., Mukamel Z., Krupalnik V., Zerbib M., Geula S., Caspi I., Schneir D., Shwartz T., Gilad S., Amann-Zalcenstein D., Benjamin S., Amit I., Tanay A., Massarwa R., Novershtern N., Hanna J.H. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504(7479):282-286. https://doi.org/10.1038/nature12745.
24. Gardner R.L. Mouse chimeras obtained by the injection of cells into the blastocyst. Nature. 1968;220(5167):596-597. https://doi.org/10.1038/220596a0.
25. Goto T., Hara H., Sanbo M., Masaki H., Sato H., Yamaguchi T., Hochi S., Kobayashi T., Nakauchi H., Hirabayashi M. Generation of pluripotent stem cell-derived mouse kidneys in Sall1-targeted anephric rats. Nat. Commun. 2019;10(1):451. https://doi.org/10.1038/s41467-019-08394-9.
26. Guo G., Yang J., Nichols J., Hall J.S., Eyres I., Mansfield W., Smith A. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development. 2009;136(7):1063-1069. https://doi.org/10.1242/dev.030957.
27. Hamanaka S., Umino A., Sato H., Hayama T., Yanagida A., Mizuno N., Kobayashi T., Kasai M., Suchy F.P., Yamazaki S., Masaki H., Yamaguchi T., Nakauchi H. Generation of vascular endothelial cells and hematopoietic cells by blastocyst complementation. Stem Cell Reports. 2018;11(4):988-997. https://doi.org/10.1016/j.stemcr.2018.08.015.
28. Hanna J., Cheng A.W., Saha K., Kim J., Lengner C.J., Soldner F., Cassady J.P., Muffat J., Carey B.W., Jaenisch R. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl. Acad. Sci. USA. 2010;107(20):9222- 9227. https://doi.org/10.1073/pnas.1004584107.
29. Harrison S.E., Sozen B., Christodoulou N., Kyprianou C., ZernickaGoetz M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science. 2017;356(6334). https://doi.org/10.1126/science.aal1810.
30. Hashimoto H., Eto T., Yamamoto M., Yagoto M., Goto M., Kagawa T., Kojima K., Kawai K., Akimoto T., Takahashi R.I. Development of blastocyst complementation technology without contributions to gametes and the brain. Exp. Anim. 2019;68(3):361-370. https://doi.org/10.1538/expanim.18-0173.
31. Hayashi K., Hikabe O., Obata Y., Hirao Y. Reconstitution of mouse oogenesis in a dish from pluripotent stem cells. Nat. Protoc. 2017; 12(9):1733-1744. https://doi.org/10.1038/nprot.2017.070.
32. Hu Z., Li H., Jiang H., Ren Y., Yu X., Qiu J., Stablewski A.B., Zhang B., Buck M.J., Feng J. Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos. Sci. Adv. 2020;6(20):eaaz0298. https://doi.org/10.1126/sciadv.aaz0298.
33. Huang Y., Liang P., Liu D., Huang J., Songyang Z. Telomere regulation in pluripotent stem cells. Protein Cell. 2014;5(3):194-202. https://doi.org/10.1007/s13238-014-0028-1.
34. Huang Y., Osorno R., Tsakiridis A., Wilson V. In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell Rep. 2012;2(6):1571-1578. https://doi.org/10.1016/j.celrep.2012.10.022.
35. Isotani A., Hatayama H., Kaseda K., Ikawa M., Okabe M. Formation of a thymus from rat ES cells in xenogeneic nude mouse↔rat ES chimeras. Genes Cells. 2011;16(4):397-405. https://doi.org/10.1111/j.1365-2443.2011.01495.x.
36. James D., Noggle S.A., Swigut T., Brivanlou A.H. Contribution of human embryonic stem cells to mouse blastocysts. Dev. Biol. 2006; 295(1):90-102. https://doi.org/10.1016/j.ydbio.2006.03.026.
37. Kilens S., Meistermann D., Moreno D., Chariau C., Gaignerie A., Reignier A., Lelièvre Y., Casanova M., Vallot C., Nedellec S., Flippe L., Firmin J., Song J., Charpentier E., Lammers J., Donnart A., Marec N., Deb W., Bihouée A., Le Caignec C., Pecqueur C., Redon R., Barrière P., Bourdon J., Pasque V., Soumillon M., Mikkelsen T.S., Rougeulle C., Fréour T., David L., Milieu Intérieur. Consortium. Parallel derivation of isogenic human primed and naive induced pluripotent stem cells. Nat. Commun. 2018;9(1):360. https://doi.org/10.1038/s41467-017-02107-w.
38. Kobayashi T., Yamaguchi T., Hamanaka S., Kato-Itoh M., Yamazaki Y., Ibata M., Sato H., Lee Y.S., Usui J., Knisely A.S., Hirabayashi M., Nakauchi H. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142(5):787- 799. https://doi.org/10.1016/j.cell.2010.07.039.
39. Liu X., Nefzger C.M., Rossello F.J., Chen J., Knaupp A.S., Firas J., Ford E., Pflueger J., Paynter J.M., Chy H.S., O’Brien C.M., Huang C., Mishra K., Hodgson-Garms M., Jansz N., Williams S.M., Blewitt M.E., Nilsson S.K., Schittenhelm R.B., Laslett A.L., Lister R., Polo J.M. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat. Methods. 2017;14(11):1055-1062. https://doi.org/10.1038/nmeth.4436.
40. MacLaren L.A., Anderson G.B., BonDurant R.H., Edmondson A.J. Inter- and intraspecific placentae in sheep, goats and sheep-goat chimaeras. J. Comp. Pathol. 1992;106(3):279-297. https://doi.org/10.1016/ 0021-9975(92)90056-z.
41. Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823-826. https://doi.org/10.1126/science.1232033.
42. Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA. 1981;78(12):7634-7638. https://doi.org/10.1073/pnas.78.12.7634.
43. Masaki H., Kato-Itoh M., Takahashi Y., Umino A., Sato H., Ito K., Yanagida A., Nishimura T., Yamaguchi T., Hirabayashi M., Era T., Loh K.M., Wu S.M., Weissman I.L., Nakauchi H. Inhibition of apoptosis overcomes stage-related compatibility barriers to chimera formation in mouse embryos. Cell Stem Cell. 2016;19(5):587-592. https://doi.org/10.1016/j.stem.2016.10.013.
44. Mascetti V.L., Pedersen R.A. Contributions of mammalian chimeras to pluripotent stem cell research. Cell Stem Cell. 2016a;19(2):163-175. https://doi.org/10.1016/j.stem.2016.07.018.
45. Mascetti V.L., Pedersen R.A. Human-mouse chimerism validates human stem cell pluripotency. Cell Stem Cell. 2016b;18(1):67-72. https://doi.org/10.1016/j.stem.2015.11.017.
46. Matsunari H., Watanabe M., Hasegawa K., Uchikura A., Nakano K., Umeyama K., Masaki H., Hamanaka S., Yamaguchi T., Nagaya M., Nishinakamura R., Nakauchi H., Nagashima H. Compensation of disabled organogeneses in genetically modified pig fetuses by blastocyst complementation. Stem Cell Reports. 2020;14(1):21-33. https://doi.org/10.1016/j.stemcr.2019.11.008.
47. McLaren A., Bowman P. Mouse chimaeras derived from fusion of embryos differing by nine genetic factors. Nature. 1969;224(5216): 238-240. https://doi.org/10.1038/224238a0.
48. Mintz B. Genetic mosaicism in adult mice of quadriparental lineage. Science. 1965;148(3674):1232-1233. https://doi.org/10.1126/science.148.3674.1232.
49. Nelson J.L., Furst D.E., Maloney S., Gooley T., Evans P.C., Smith A., Bean M.A., Ober C., Bianchi D.W. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet. 1998; 351(9102):559-562. https://doi.org/10.1016/S0140-6736(97)08357-8.
50. Nichols J., Smith A. Naive and primed pluripotent states. Cell Stem Cell. 2009;4(6):487-492. https://doi.org/10.1016/j.stem.2009.05.015.
51. Offield M.F., Jetton T.L., Labosky P.A., Ray M., Stein R.W., Magnuson M.A., Hogan B.L., Wright C.V. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122(3):983-995.
52. Ohinata Y., Payer B., O’Carroll D., Ancelin K., Ono Y., Sano M., Barton S.C., Obukhanych T., Nussenzweig M., Tarakhovsky A., Saitou M., Surani M.A. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature. 2005;436(7048):207-213. https://doi.org/10.1038/nature03813.
53. Okita K., Ichisaka T., Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313-317. https://doi.org/10.1038/nature05934.
54. Okumura H., Nakanishi A., Toyama S., Yamanoue M., Yamada K., Ukai A., Hashita T., Iwao T., Miyamoto T., Tagawa Y.I., Hirabayashi M., Miyoshi I., Matsunaga T. Contribution of rat embryonic stem cells to xenogeneic chimeras in blastocyst or 8-cell embryo injection and aggregation. Xenotransplantation. 2019;26(1):e12468. https://doi.org/10.1111/xen.12468.
55. Pera M.F., de Wert G., Dondorp W., Lovell-Badge R., Mummery C.L., Munsie M., Tam P.P. What if stem cells turn into embryos in a dish? Nat. Methods. 2015;12(10):917-919. https://doi.org/10.1038/nmeth.3586.
56. Rashid T., Kobayashi T., Nakauchi H. Revisiting the flight of Icarus: making human organs from PSCs with large animal chimeras. Cell Stem Cell. 2014;15(4):406-409. https://doi.org/10.1016/j.stem.2014.09.013.
57. Rivron N.C., Frias-Aldeguer J., Vrij E.J., Boisset J.C., Korving J., Vivié J., Truckenmüller R.K., van Oudenaarden A., van Blitterswijk C.A., Geijsen N. Blastocyst-like structures generated solely from stem cells. Nature. 2018;557(7703):106-111. https://doi.org/10.1038/s41586-018-0051-0.
58. Shaw D., Dondorp W., Geijsen N., de Wert G. Creating human organs in chimaera pigs: an ethical source of immunocompatible organs? J. Med. Ethics. 2015;41(12):970-974. https://doi.org/10.1136/medethics2014-102224.
59. Stanger B.Z., Tanaka A.J., Melton D.A. Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature. 2007;445(7130):886-891. https://doi.org/10.1038/nature05537.
60. Suchy F., Nakauchi H. Lessons from interspecies mammalian chimeras. Annu. Rev. Cell Dev. Biol. 2017;33:203-217. https://doi.org/10.1146/annurevcellbio-100616-060654.
61. Sung Y.H., Baek I.J., Kim D.H., Jeon J., Lee J., Lee K., Jeong D., Kim J.S., Lee H.W. Knockout mice created by TALEN-mediated gene targeting. Nat. Biotechnol. 2013;31(1):23-24. https://doi.org/10.1038/nbt.2477.
62. Tachibana M., Sparman M., Ramsey C., Ma H., Lee H.S., Penedo M.C., Mitalipov S. Generation of chimeric rhesus monkeys. Cell. 2012; 148(1-2):285-295. https://doi.org/10.1016/j.cell.2011.12.007.
63. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-872. https://doi.org/10.1016/j.cell.2007.11.019.
64. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. https://doi.org/10.1016/j.cell.2006.07.024.
65. Tarkowski A.K. Mouse chimaeras developed from fused eggs. Nature. 1961;190:857-860. https://doi.org/10.1038/190857a0.
66. Tesar P.J., Chenoweth J.G., Brook F.A., Davies T.J., Evans E.P., Mack D.L., Gardner R.L., McKay R.D. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448(7150):196-199. https://doi.org/10.1038/nature05972.
67. Theunissen T.W., Friedli M., He Y., Planet E., O’Neil R.C., Markoulaki S., Pontis J., Wang H., Iouranova A., Imbeault M., Duc J., Cohen M.A., Wert K.J., Castanon R., Zhang Z., Huang Y., Nery J.R., Drotar J., Lungjangwa T., Trono D., Ecker J.R., Jaenisch R. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell. 2016;19(4):502-515. https://doi.org/10.1016/j.stem.2016.06.011.
68. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145-1147. https://doi.org/10.1126/science.282.5391.1145.
69. Thomson J.A., Kalishman J., Golos T.G., Durning M., Harris C.P., Becker R.A., Hearn J.P. Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA. 1995;92(17):7844-7848. https://doi.org/10.1073/pnas.92.17.7844.
70. Tippett P. Blood group chimeras. A review. Vox Sang. 1983;44(6):333- 359. https://doi.org/10.1111/j.1423-0410.1983.tb03657.x.
71. Tsukiyama T., Ohinata Y. A modified EpiSC culture condition containing a GSK3 inhibitor can support germline-competent pluripotency in mice. PLoS One. 2014;9(4):e95329. https://doi.org/10.1371/journal.pone.0095329.
72. Usui J., Kobayashi T., Yamaguchi T., Knisely A.S., Nishinakamura R., Nakauchi H. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am. J. Pathol. 2012;180(6):2417- 2426. https://doi.org/10.1016/j.ajpath.2012.03.007.
73. Wang R., Li T. DNA methylation is correlated with pluripotency of stem cells. Curr. Stem Cell Res. Ther. 2017;12(6):442-446. https://doi.org/10.2174/1574888X11666161226145432.
74. Watanabe K., Ueno M., Kamiya D., Nishiyama A., Matsumura M., Wataya T., Takahashi J.B., Nishikawa S., Nishikawa S., Muguruma K., Sasai Y. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 2007;25(6):681-686. https://doi.org/10.1038/nbt1310.
75. Whitworth K.M., Lee K., Benne J.A., Beaton B.P., Spate L.D., Murphy S.L., Samuel M.S., Mao J., O’Gorman C., Walters E.M., Murphy C.N., Driver J., Mileham A., McLaren D., Wells K.D., Prather R.S. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol. Reprod. 2014;91(3):78. https://doi.org/10.1095/biolreprod.114.121723.
76. Wobus A.M., Boheler K.R. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev. 2005;85(2):635- 678. https://doi.org/10.1152/physrev.00054.2003.
77. Wu J., Platero-Luengo A., Sakurai M., Sugawara A., Gil M.A., Yamauchi T., Suzuki K., Bogliotti Y.S., Cuello C., Morales Valencia M., Okumura D., Luo J., Vilariño M., Parrilla I., Soto D.A., Martinez C.A., Hishida T., Sánchez-Bautista S., Martinez-Martinez M.L., Wang H., Nohalez A., Aizawa E., Martinez-Redondo P., Ocampo A., Reddy P., Roca J., Maga E.A., Esteban C.R., Berggren W.T., Nuñez Delicado E., Lajara J., Guillen I., Guillen P., Campistol J.M., Martinez E.A., Ross P.J., Izpisua Belmonte J.C. Interspecies chimerism with mammalian pluripotent stem cells. Cell. 2017;168(3):473-486. e415. https://doi.org/10.1016/j.cell.2016.12.036.
78. Yamaguchi T., Sato H., Kato-Itoh M., Goto T., Hara H., Sanbo M., Mizuno N., Kobayashi T., Yanagida A., Umino A., Ota Y., Hamanaka S., Masaki H., Rashid S.T., Hirabayashi M., Nakauchi H. Interspecies organogenesis generates autologous functional islets. Nature. 2017;542(7640):191-196. https://doi.org/10.1038/nature21070.
79. Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917-1920. https://doi.org/10.1126/science.1151526.
80. Zhou W., Choi M., Margineantu D., Margaretha L., Hesson J., Cavanaugh C., Blau C.A., Horwitz M.S., Hockenbery D., Ware C., Ruohola-Baker H. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 2012;31(9):2103-2116. https://doi.org/10.1038/emboj.2012.71.