Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Дифференциальная экспрессия 10 генов, ассоциированных с агрессивным поведением, в гипоталамусе двух поколений крыс, селекционируемых по реакции на человека

https://doi.org/10.18699/VJ21.50-o

Аннотация

Индивидуальные особенности поведения у особей одного вида обусловлены взаимодействием генотипа и социального опыта. Как у любого типа поведения, фенотипическое проявление паттернов агрессивного поведения зависит от согласованной экспрессии целых ансамблей генов. Однако идентификация этих генов и комбинаций их взаимного влияния на экспрессию остается сложной задачей. С целью выявления наиболее значимых для осуществления агрессивных реакций генов нами на модельных животных – серых крысах, селекционируемых по реакции на человека (линии ручных и агрессивных крыс), была проведена оценка уровня экспрессии выбранных на основе литературных данных десяти генов (Cacna1b, Cacna2d3, Drd2, Egr1, Gad2, Gria2, Mapk1, Nos1, Pomc, Syn1), которые ассоциированы с агрессивным поведением. Экспрессию генов оценивали методом ПЦР в реальном времени в образцах гипоталамуса ручных и агрессивных серых крыс двух разных поколений (88-е и 90-е). В результате проведенного анализа экспрессии генов в гипоталамусе крыс, селекционируемых на ручное и агрессивное поведение, было обнаружено, что четыре из десяти исследуемых генов достоверно различаются по уровню экспрессии между крысами агрессивной и ручной линий 88-го и 90-го поколений разведения. Кроме того, показано, что экспрессия генов Cacna1b, Drd2, Egr1 и Gad2 не изменяется между двумя поколениями крыс одной и той же линии, но достоверно различается между линиями: у крыс ручной линии обоих поколений эти гены экспрессируются достоверно ниже по сравнению с агрессивной. Гены Cacna1b, Drd2, Egr1 и Gad2 являются наиболее перспективными для дальнейших исследований поведенческих особенностей крыс, селекционируемых по реакции на человека. Данный результат подтверждает полигенную детерминацию фенотипического проявления агрессивных реакций на примере модельных животных.

Об авторах

Н. В. Климова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



И. В. Чадаева
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



С. Г. Шихевич
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Р. В. Кожемякина
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Список литературы

1. Albert F.W., Somel M., Carneiro M., Aximu­Petri A., Halbwax M., Thalmann O., Blanco-Aguiar J.A., Plyusnina I.Z., Trut L., Villafuerte R., Ferrand N., Kaiser S., Jensen P., Pääbo S. A comparison of brain gene expression levels in domesticated and wild animals. PLoS Genet. 2012;8(9):e1002962. DOI 10.1371/journal.pgen.1002962.

2. Anholt R.R.H., Mackay T.F.C. Genetics of аggression. Annu. Rev. Genet. 2012;46:145-164. DOI 10.1146/annurev-genet-110711-155514.

3. Audero E., Mlinar B., Baccini G., Skachokova Z.K., Corradetti R., Gross C. Suppression of serotonin neuron firing increases aggression in mice. J. Neurosci. 2013;33(20):8678-8688. DOI 10.1523/JNEUROSCI.2067­12.2013.

4. Belyaev D.K., Borodin P.M. The influence of stress on variation and its role in evolution. In: Evolutionary Genetics. Leningrad, 1985;35-39. (in Russian)

5. Bunda A., LaCarubba B., Bertolino M., Akiki M., Bath K., LopezSoto J., Lipscombe D., Andrade A. Cacna1b alternative splicing impacts excitatory neurotransmission and is linked to behavioral responses to aversive stimuli. Mol. Brain. 2019;12(1):81. DOI 10.1186/s13041-019-0500-1.

6. Castiglioni A.J., Raingo J., Lipscombe D. Alternative splicing in the C-terminus of CaV2.2 controls expression and gating of N-type calcium channels. J. Physiol. 2006;576(Pt.1):119-134. DOI 10.1113/jphysiol.2006.115030.

7. Cervantes M., Delville Y. Serotonin 5­HT1A and 5­HT3 receptors in an impulsive–aggressive phenotype. Behav. Neurosci. 2009;123(3): 589-598. DOI 10.1037/a0015333.

8. Chu Q., Liang T., Fu L., Li H., Zhou B. Behavioural genetic differences between Chinese and European pigs. J. Genet. 2017;96(4):707-715. DOI 10.1007/s12041-017-0826-3.

9. Clement J., Simler S., Ciesielski L., Mandel P., Cabib S., Puglisi­Allegra S. Age­dependent changes of brain GABA levels, turnover rates and shock-induced aggressive behavior in inbred strains of mice. Pharmacol. Biochem. Behav. 1987;26(1):83-88. DOI 10.1016/0091-3057(87)90538-7.

10. Craig I.W., Halton K.E. Genetics of human aggressive behavior. Hum. Genet. 2009;126:101-113. DOI 10.1007/s00439-009-0695-9.

11. Cullinan W.E., Herman J.P., Battaglia D.F., Akil H., Watson S.J. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience. 1995;64:477-505. DOI 10.1016/0306-4522(94)00355-9.

12. Cushing B.S. Estrogen receptor alpha distribution and expression in the social neural network of monogamous and polygynous Peromyscus. PLoS One. 2016;11(3):e0150373. DOI 10.1371/journal.pone.0150373.

13. de Boer S.F., Koolhaas J.M. 5­HT1A and 5­HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Europ. J. Pharmac. 2005;526:125-139. DOI 10.1016/j.ejphar.2005.09.065.

14. Elizalde N., Pastor P.M., Garcia‐GarciaA.L., Serres F., Venzala E., Huarte J., Ramírez M.J., Del Rio J., Sharp T., Tordera R.M. Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1. J. Neurochem. 2010;114:1302-1314. DOI 10.1111/j.1471-4159.2010.06854.x.

15. Fairbanks L.A., Newman T.K., Bailey J.N., Jorgensen M.J., Breidenthal S.E., Ophoff R.A., Comuzzie A.G., Martin L.J., Rogers J. Genetic contributions to social impulsivity and aggressiveness in vervet monkeys. Biol. Psychiatry. 2004;55:642-647. DOI 10.1016/j.biopsych.2003.12.005.

16. Golden S.A., Jin M., Heins C., Venniro M., Michaelides M., Shaham Y. Nucleus accumbens Drd1-expressing neurons control aggression self-administration and aggression seeking in mice. J. Neurosci. 2019;39(13):2482-2496. DOI 10.1523/JNEUROSCI.2409­18.2019.

17. Guillot P.V., Chapouthier G. Intermale aggression, GAD activity in the olfactory bulbs and Y chromosome effect in seven inbred mouse strains. Behav. Brain Res. 1998;90(2):203-206. DOI 10.1016/S0166­4328(97)00110­1.

18. Gulevich R.G., Oskina I.N., Shikhevich S.G., Fedorova E.V., Trut L.N. Effect of selection for behavior on pituitary–adrenal axis and proopiomelanocortin gene expression in silver foxes (Vulpes vulpes). Physiol. Behav. 2004;82(2-3):513-518. DOI 10.1016/j.physbeh.2004.04.062.

19. Hansen C.C., Ljung H., Brodtkorb E., Reimers A. Mechanisms underlying aggressive behavior induced by antiepileptic drugs: focus on topiramate, levetiracetam, and perampanel. Behav. Neurol. 2018; 2018:2064027. DOI 10.1155/2018/2064027.

20. Heyne H.O., Lautenschlager S., Nelson R., Besnier F., Rotival M., Cagan A., Kozhemyakina R., Plyusnina I.Z., Trut L., Carlborg Ö., Petretto E., Kruglyak L., Pääbo S., Schöneberg T., Albert F.W. Genetic influences on brain gene expression in rats selected for tameness and aggression. Genetics. 2014;198:1277-1290. DOI 10.1534/genetics.114.168948.

21. Hodges T.E., Green M.R., Simone J.J., McCormick C.M. Effects of social context on endocrine function and Zif268 expression in response to an acute stressor in adolescent and adult rats. Int. J. Develop. Neurosci. 2014;35(1):25-34. DOI 10.1016/j.ijdevneu.2014.03.001.

22. Hoopfer E.D. Neural control of aggression in Drosophila. Curr. Opin. Neurobiol. 2016;38:109-118. DOI 10.1016/j.conb.2016.04.007.

23. Hrabovszky E., Halasz J., Meelis W., Kruk M.R., Liposits Z., Haller J. Neurochemical characterization of hypothalamic neurons involved in attack behavior: glutamatergic dominance and co-expression of thyrotropin-releasing hormone in a subset of glutamatergic neurons. Neuroscience. 2005;133:657-666. DOI 10.1016/j.neuroscience.2005.03.042.

24. Hudziak J.J., van Beijsterveldt C.E.M., Bartels M., Rietveld M.J.H., Rettew D.C., Derks E.M., Boomsma D.I. Individual differences in aggression: genetic analyses by age, gender, and informant in 3-, 7-, and 10-year-old Dutch twins. Behav. Genet. 2003;33:575-589. DOI 10.1023/a:1025782918793.

25. Ilchibaeva T.V., Kondaurova E.M., Tsybko A.S., Kozhemyakina R.V., Popova N.K., Naumenko V.S. Brain­derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fearinduced aggression. Behav. Brain Res. 2015;1(290):45-50. DOI 10.1016/j.bbr.2015.04.041.

26. Kim C., Jeon D., Kim Y.­H., Lee C.J., Kim H., Shin H.­S. Deletion of N-type Ca2+ channel Cav2.2 results in hyperaggressive behaviors in mice. J. Biol. Chem. 2009;284(5):2738-2745. DOI 10.1074/jbc.M807179200.

27. Kim V., Zhang-James Y., Fernandez-Castillo N., Bakker M., Cormand B., Faraone S.V. Genetics of aggressive behavior: an overview. Am. J. Med. Genet. Part B. 2015;171B:3-43. DOI 10.1002/ajmg.b.32364.

28. Knapska E., Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif 268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog. Neurobiol. 2004;74(4):183-211. DOI 10.1016/j.pneurobio.2004.05.007.

29. Kozhemyakina R.V. Taming of grey rat. Priroda = Nature. 2017;6:70-78. (in Russian)

30. Kozhemyakina R.V., Konoshenko M.Y., Sakharov D.G., Smagin D.A., Markel A.L. Comparative analysis of behavior in the open/field test in wild grey rats (Rattus norvegicus) and in grey rats subjected to prolonged selection for tame and aggressive behavior. Zhurnal Vysshey Nervnoy Deyatel’nosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2016;66:92-102. DOI 10.7868/S0044467716010093. (in Russian)

31. Kruk M.R. Ethology and pharmacology of hypothalamic aggression in the rat. Neurosci. Biobehav. Rev. 1991;15:527-538. DOI 10.1016/s0149-7634(05)80144-7.

32. Kudryavtseva N.N., Markel A.L., Orlov Yu.L. Aggressive behavior: genetic and physiological mechanisms. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014; 18(4/3):1133-1155. (in Russian)

33. Kulikov A.V., Osipova D.V., Naumenko V.S., Terenina E., Mormède P., Popova N.K. A pharmacological evidence of positive association between mouse intermale aggression and brain serotonin metabolism. Behav. Brain Res. 2012;233(1):113-119. DOI 10.1016/j.bbr.2012.04.031.

34. Lin D., Boyle M.P., Dollar P., Lee H., Lein E.S., Perona P., Anderson D.J. Functional identification of an aggression locus in the mouse hypothalamus. Nature. 2011;470:221-226. DOI 10.1038/nature09736.

35. Lindenfors P., Tullberg B.S. Evolutionary aspects of aggression: the importance of sexual selection. Adv. Genet. 2011;75:7-22. DOI 10.1016/B978-0-12-380858-5.00009-5.

36. Markel A.L. Biosocial base of aggressiveness and aggressive behavior. Zhurnal Vysshey Nervnoy Deyatel’nosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2016;66(6):1-12. DOI 10.7868/S0044467716060071. (in Russian)

37. Miczek K.A., Fish E.W., de Bold J.F., de Almeida R.M. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ­aminobutyric acid systems. Psychopharmacology. 2002;163:434-458. DOI 10.1007/s00213-002-1139-6.

38. Naumenko V.S., Kozhemjakina R.V., Plyusnina I.Z., Popova N.K. Expression of serotonin transporter gene and startle response in rats with genetically determined fear-induced aggression. Bulletin of Experimental Biology and Medicine. 2009;147(1):81-83. DOI 10.1007/s10517-009-0441-2.

39. Nelson R.J., Demas G.E., Huang P.L., Fishman M.C., Dawson V.L., Dawson T.M., Snyder S.H. Behavioral abnormalities in male mice lacking neuronal nitric oxide synthase. Nature. 1995;378(6555): 383-386. DOI 10.1038/378383a0.

40. Olivier B. Serotonin and aggression. Ann. N.Y. Acad. Sci. 2010;1036: 382-392. DOI 10.1196/annals.1330.022.

41. Park H.J., Kim S.K., Kang W.S., Chung J.H., Kim J.W. Increased activation of synapsin1 and mitogen-activated protein kinases/extracellular signal-regulated kinase in the amygdala of maternal separation rats. CNS Neurosci. Ther. 2014;20(2):172-181. DOI 10.1111/cns.12202.

42. Pavlov K.A., Chistiakov D.A., Chekhonin V.P. Genetic determinants of aggression and impulsivity in humans. J. Appl. Genet. 2012;53: 61-82. DOI 10.1007/s13353-011-0069-6.

43. Plyusnina I.S., Schepina O.A., Oskina I.N., Trut L.N. Some features of learning in the Morris water test in rats selected for responses to humans. Neurosci. Behav. Physiol. 2008;38(5):511-516.

44. Qadeer M.I., Amar A., Mann J.J., Hasnain S. Polymorphisms in dopaminergic system genes; association with criminal behavior and selfreported aggression in violent prison inmates from Pakistan. PLoS One. 2017;12(6):e0173571. DOI 10.1371/journal.pone.0173571.

45. Raleigh M.J., McGuire M.T., Brammer G.L., Pollack D.B., Yuwiler A. Serotonergic mechanisms promote dominance acquisition in adult male vervet monkeys. Brain Res. 1991;559:181-190. DOI 10.1016/0006-8993(91)90001-C.

46. Reif A., Jacob C.P., Rujescu D., Herterich S., Lang S., Gutknecht L., Baehne C.G., Strobel A., Freitag C.M., Giegling I., Romanos M., Hartmann A., Rosler M., Renner T.J., Fallgatter A.J., Retz W., Ehlis A.C., Lesch K.P. Influence of functional variant of neuronal nitric oxide synthase on impulsive behaviors in humans. Arch. Gen. Psych. 2009;66(1):41-50. DOI 10.1001/archgenpsychiatry.2008.510.

47. Saetre P., Strandberg E., Sundgren P.‐E., Pettersson U., Jazin E., Bergström T.F. The genetic contribution to canine personality. Genes Brain Behav. 2006;5:240-248. DOI 10.1111/j.1601-183X.2005.00155.x.

48. Satoh Y., Endo S., Nakata T., Kobayashi Y., Yamada K., Ikeda T., Takeuchi A., Hiramoto T., Watanabe Y., Kazama T. ERK2 contributes to the control of social behaviors in mice. J. Neurosci. 2011;31(33): 11953-11967. DOI 10.1523/JNEUROSCI.2349­11.2011.

49. Simler S., Puglisi­Allegra S., Mandel P. γ­Aminobutyric acid in brain areas of isolated aggressive or non-aggressive inbred strains of mice. Pharmacol. Biochem. Behav. 1982;16:57-61. DOI 10.1016/0091-3057(82)90013-2.

50. Stork O., Ji F.Y., Kaneko K., Stork S., Yoshinobu Y., Moriya T., Shibata S., Obata K. Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res. 2000;865(1):45-58. DOI 10.1016/s0006-8993(00)02206-x.

51. Summers C.H., Winberg S. Interactions between the neural regulation of stress and aggression. J. Experim. Biol. 2006;209:4581-4589. DOI 10.1242/jeb.02565.

52. Takahashi A., Miczek K.A. Neurogenetics of aggressive behavior: studies in rodents. Curr. Top. Behav. Neurosci. 2014;17:3-44. DOI 10.1007/7854_2013_263.

53. Topilko P., Schneider­Maunoury S., Levi G., Trembleau A., Gourdji D., Driancourt M.-A., Rao Ch.V., Charnay P. Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)-targeted mice. Mol. Endocrinol. 1998;12(1):107-122. DOI 10.1210/mend.12.1.0049.

54. VanErp A.M.M., Miczek K.A. Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J. Neurocsi. 2000;20(24):9320-9325. DOI 10.1523/JNEUROSCI.20­24­09320.2000.

55. VanOortmerssen G.A., Bakker T.C. Artificial selection for short and long attack latencies in wild Mus musculus domesticus. Behav. Genet. 1981;11(2):115-126. DOI 10.1007/bf01065622.

56. Værøy H., Adori C., Legrand R., Lucas N., Breton J., Cottard C., do Rego J.C., Duparc C., Louiset E., Lefebvre H., Déchelotte P., Western E., Andersson S., Hökfelt T., Fetissov S.O. Autoantibodies reactive to adrenocorticotropic hormone can alter cortisol secretion in both aggressive and nonaggressive humans. Proc. Natl. Acad. Sci. USA. 2018;115(28):E6576-E6584. DOI 10.1073/pnas.1720008115.

57. Vekovischeva O.Y., Aitta‐aho T., Echenko O., Kankaanpää A., Seppälä T., Honkanen A., Sprengel R., Korpi E.R. Reduced aggression in AMPA­type glutamate receptor GluR­A subunit­deficient mice. Genes Brain Behav. 2004;3:253-265. DOI 10.1111/j.1601-1848.2004.00075.x.

58. Veroude K., Zhang-James Y., Fernandez-Castillo N., Bakker M.J., Cormand B., Faraone S.V. Genetics of aggressive behavior: an overview. Am. J. Med. Genet. Part B. 2016;171B:3-43. DOI 10.1002/ajmg.b.32364.

59. Watanabe Y., Stone E., McEwen B.C. Induction and habituation of c-Fos and Zif/268 by acute and repeated stressors. NeuroReport. 1994;5:1321-1324. DOI 10.1097/00001756-199406270-00006.

60. Wultsch T., Chourbaji S., Fritzen S., Kittel S., Grünblatt E., Gerlach M., Gutknecht L., Chizat F., Golfler G., Schmitt A., Gass P., Lesch K.­P., Reif A. Behavioural and expressional phenotyping of nitric oxide synthase-I knockdown animals. J. Neural. Transm. Suppl. 2007;72: 69-85. DOI 10.1007/978-3-211-73574-9_10.

61. Yamaguchi T., Lin D. Functions of medial hypothalamic and mesolimbic dopamine circuitries in aggression. Curr. Opin. Behav. Sci. 2018;24:104-112. DOI 10.1016/j.cobeha.2018.06.011.

62. Zamponi G. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov. 2016;15:19-34. DOI 10.1038/nrd.2015.5.


Рецензия

Просмотров: 1158


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)