Метод поиска структурной гетерогенности сайтов связывания транскрипционных факторов с использованием альтернативных de novo моделей на примере FOXA2
https://doi.org/10.18699/VJ21.002
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Об авторах
А. В. ЦукановРоссия
Новосибирск
В. Г. Левицкий
Россия
Новосибирск
Т. И. Меркулова
Россия
Новосибирск
Список литературы
1. Bailey T.L., Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proc. Int. Conf. Intell. Syst. Mol. Biol. 1994;2:28-36. https://doi.org/citeulike-article-id:878292. PMID 7584402.
2. Benos P.V., Bulyk M.L., Stormo G.D. Additivity in protein-DNA interactions: how good an approximation is it? Nucleic Acids Res. 2002;30(20):4442-4451. https://doi.org/10.1093/nar/gkf578.
3. Bi Y., Kim H., Gupta R., Davuluri R.V. Tree-based position weight matrix approach to model transcription factor binding site profiles. PLoS One. 2011;6(9):e24210. https://doi.org/10.1371/journal.pone.0024210.
4. Bulyk M.L., Johnson P.L.F., Church G.M. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. Nucleic Acids Res. 2002;30(5):1255-1261. https://doi.org/10.1093/nar/30.5.1255.
5. Chen X., Wei H., Li J., Liang X., Dai S., Jiang L., Guo M., Qu L., Chen Z., Chen L., Chen Y. Structural basis for DNA recognition by FOXC2. Nucleic Acids Res. 2019;47(7):3752-3764. https://doi.org/10.1093/nar/gkz077.
6. Chèneby J., Ménétrier Z., Mestdagh M., Rosnet T., Douida A., Rhalloussi W., Bergon A., Lopez F., Ballester B. ReMap 2020: a database of regulatory regions from an integrative analysis of Human and Arabidopsis DNA-binding sequencing experiments. Nucleic Acids Res. 2020;48(D1):D180-D188. https://doi.org/10.1093/nar/gkz945.
7. Eggeling R., Grosse I., Grau J. InMoDe: tools for learning and visualizing intra-motif dependencies of DNA binding sites. Bioinformatics. 2017;33(4):580-582. https://doi.org/10.1093/bioinformatics/btw689.
8. Farnham P.J. Insights from genomic profiling of transcription factors. Nat. Rev. Genet. 2009;10(9):605-616. https://doi.org/10.1038/nrg2636.
9. Furey T.S. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet. 2012;13(12):840-852. https://doi.org/10.1038/nrg3306.
10. Gheorghe M., Sandve G.K., Khan A., Chèneby J., Ballester B., Mathelier A. A map of direct TF-DNA interactions in the human genome. Nucleic Acids Res. 2019;47(4):e21. https://doi.org/10.1093/nar/gky1210.
11. Gupta S., Stamatoyannopoulos J.A., Bailey T.L., Noble W.S. Quantifying similarity between motifs. Genome Biol. 2007;8(2):R24. https://doi.org/10.1186/gb-2007-8-2-r24.
12. Heinz S., Benner C., Spann N., Bertolino E., Lin Y.C., Laslo P., Cheng J.X., Murre C., Singh H., Glass C.K. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 2010;38(4):576-589. https://doi.org/10.1016/j.molcel.2010.05.004.
13. Ignatieva E.V., Oshchepkov D.Y., Levitsky V.G., Vasiliev G.V., Klimova N.V., Busygina T.V., Merkulova T.I. Comparison of the results of search for the SF-1 binding sites in the promoter regions of the steroidogenic genes, using the SiteGA and SITECON methods. In: Proc. Fourth Int. Conf. Bioinform. Genome Regul. Struct. (BGRS). 2004;1:69-72.
14. Iwafuchi-Doi M. The mechanistic basis for chromatin regulation by pioneer transcription factors. WIREs Syst. Biol. Med. 2019;11(1): e1427. https://doi.org/10.1002/wsbm.1427.
15. Keilwagen J., Grau J. Varying levels of complexity in transcription factor binding motifs. Nucleic Acids Res. 2015;43(18):e119. https://doi.org/10.1093/nar/gkv577.
16. Kiesel A., Roth C., Ge W., Wess M., Meier M., Söding J. The BaMM web server for de-novo motif discovery and regulatory sequence analysis. Nucleic Acids Res. 2018;46(W1):W215-W220. https://doi.org/10.1093/nar/gky431.
17. Kulakovskiy I.V., Boeva V.A., Favorov A.V., Makeev V.J. Deep and wide digging for binding motifs in ChIP-Seq data. Bioinformatics. 2010;26(20):2622-2623. https://doi.org/10.1093/bioinformatics/btq488.
18. Kulakovskiy I., Levitsky V., Oshchepkov D., Bryzgalov L., Vorontsov I., Makeev V. From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites. J. Bioinform. Comput. Biol. 2013;11(01):1340004. https://doi.org/10.1142/S0219720013400040.
19. Kulakovskiy I.V., Makeev V.J. Discovery of DNA motifs recognized by transcription factors through integration of different experimental sources. Biophysics (Oxf.). 2009;54(6):667-674. https://doi.org/10.1134/S0006350909060013.
20. Kulakovskiy I.V., Vorontsov I.E., Yevshin I.S., Sharipov R.N., Fedorova A.D., Rumynskiy E.I., Medvedeva Y.A., Magana-Mora A., Bajic V.B., Papatsenko D.A., Kolpakov F.A., Makeev V.J. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 2018;46(D1):D252-D259. https://doi.org/10.1093/nar/gkx1106.
21. Lambert S.A., Jolma A., Campitelli L.F., Das P.K., Yin Y., Albu M., Chen X., Taipale J., Hughes T.R., Weirauch M.T. The human transcription factors. Cell. 2018;172(4):650-665. https://doi.org/10.1016/j.cell.2018.01.029.
22. Latchman D.S. Transcription factors: bound to activate or repress. Trends Biochem. Sci. 2001;26(4):211-213. https://doi.org/10.1016/S0968-0004(01)01812-6.
23. Levitsky V.G., Ignatieva E.V., Ananko E.A., Turnaev I.I., Merkulova T.I., Kolchanov N.A., Hodgman T.C.T. Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions. BMC Bioinform. 2007;8(1):1-20. https://doi.org/10.1186/1471-2105-8-481.
24. Levitsky V.G., Kulakovskiy I.V., Ershov N.I., Oshchepkov D.Y., Makeev V.J., Hodgman T.C., Merkulova T.I. Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data. BMC Genom. 2014;15(1):80. https://doi.org/10.1186/1471-2164-15-80.
25. Levitsky V.G., Oshchepkov D.Y., Klimova N.V., Ignatieva E.V., Vasiliev G.V., Merkulov V.M., Merkulova T.I. Hidden heterogeneity of transcription factor binding sites: a case study of SF-1. Comput. Biol. Chem. 2016;64:19-32. https://doi.org/10.1016/j.compbiolchem.2016.04.008.
26. Lloyd S.M., Bao X. Pinpointing the genomic localizations of chromatin-associated proteins: the yesterday, today, and tomorrow of ChIP-seq. Curr. Protoc. Cell Biol. 2019;84(1):e89. https://doi.org/10.1002/cpcb.89.
27. Machanick P., Bailey T.L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011;27(12):1696-1697. https://doi.org/10.1093/bioinformatics/btr189.
28. Mathelier A., Wasserman W.W. The next generation of transcription factor binding site prediction. PLoS Comput. Biol. 2013;9(9): e1003214. https://doi.org/10.1371/journal.pcbi.1003214.
29. McClish D.K. Analyzing a portion of the ROC curve. Med. Decis. Mak. 1989;9(3):190-195. https://doi.org/10.1177/0272989X8900900307.
30. Mitra S., Biswas A., Narlikar L. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP. PLoS Comput. Biol. 2018;14(4):1-20. https://doi.org/10.1371/journal.pcbi.1006090.
31. Morgunova E., Taipale J. Structural perspective of cooperative transcription factor binding. Curr. Opin. Struct. Biol. 2017;47:1-8. https://doi.org/10.1016/j.sbi.2017.03.006.
32. Morgunova E., Yin Y., Das P.K., Jolma A., Zhu F., Popov A., Xu Y., Nilsson L., Taipale J. Two distinct DNA sequences recognized by transcription factors represent enthalpy and entropy optima. eLife. 2018;7:1-21. https://doi.org/10.7554/eLife.32963.
33. Park P.J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 2009;10(10):669-680. https://doi.org/10.1038/nrg2641.
34. Quinlan A.R., Hall I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841-842. https://doi.org/10.1093/bioinformatics/btq033.
35. Rogers J.M., Waters C.T., Seegar T.C.M., Jarrett S.M., Hallworth A.N., Blacklow S.C., Bulyk M.L. Bispecific forkhead transcription factor FoxN3 recognizes two distinct motifs with different DNA shapes. Mol. Cell. 2019;74(2):245-253.DOI 10.1016/j.molcel.2019.01.019.
36. Samee M.A.H., Bruneau B.G., Pollard K.S. A de novo shape motif discovery algorithm reveals preferences of transcription factors for DNA shape beyond sequence motifs. Cell Syst. 2019;8(1):27-42. https://doi.org/10.1016/j.cels.2018.12.001.
37. Siebert M., Söding J. Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences. Nucleic Acids Res. 2016;44(13):6055-6069. https://doi.org/10.1093/nar/gkw521.
38. Srivastava D., Mahony S. Sequence and chromatin determinants of transcription factor binding and the establishment of cell type-specific binding patterns. Biochim. Biophys. Acta - Gene Regul. Mech. 2020;1863(6):e194443. https://doi.org/10.1016/j.bbagrm.2019.194443.
39. Stormo G.D. DNA binding sites: representation and discovery. Bioinformatics. 2000;16(1):16-23. https://doi.org/10.1093/bioinformatics/16.1.16.
40. Wallerman O., Motallebipour M., Enroth S., Patra K., Bysani M.S.R., Komorowski J., Wadelius C. Molecular interactions between HNF4a, FOXA2 and GABP identified at regulatory DNA elements through ChIP-sequencing. Nucleic Acids Res. 2009;37(22):7498-7508. https://doi.org/10.1093/nar/gkp823.
41. Wederell E.D., Bilenky M., Cullum R., Thiessen N., Dagpinar M., Delaney A., Varhol R., Zhao Y., Zeng T., Bernier B., Ingham M., Hirst M., Robertson G., Marra M.A., Jones S., Hoodless P.A. Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing. Nucleic Acids Res. 2008;36(14): 4549-4564. https://doi.org/10.1093/nar/gkn382.
42. Worsley Hunt R., Wasserman W.W. Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets. Genome Biol. 2014;15(7):412. https://doi.org/10.1186/s13059-014-0412-4.
43. Yang L., Zhou T., Dror I., Mathelier A., Wasserman W.W., Gordân R., Rohs R. TFBSshape: a motif database for DNA shape features of transcription factor binding sites. Nucleic Acids Res. 2014;42(D1): D148-D155. https://doi.org/10.1093/nar/gkt1087.
44. Zhang M.O., Marr T.G. A weight array method for splicing signal analysis. Bioinformatics. 1993;9(5):499-509. https://doi.org/10.1093/bioinformatics/9.5.499.
45. Zhang Y., Liu T., Meyer C.A., Eeckhoute J., Johnson D.S., Bernstein B.E., Nusbaum C., Myers R.M., Brown M., Li W., Liu X.S. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9(9):R137. https://doi.org/10.1186/gb-2008-9-9-r137.