Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Антоцианы как компоненты функционального питания

https://doi.org/10.18699/VJ21.022

Аннотация

Среди встречающихся в природе пигментов антоцианы являются, пожалуй, одной из наиболее изученных групп. Начиная с первых исследований о физико-химических свойствах антоцианов, проведенных еще в XVII в. британским естествоиспытателем Р. Бойлем, наука об этих уникальных соединениях сделала огромный шаг вперед. На сегодняшний день достаточно хорошо исследованы структура и функции антоцианов в растительных клетках, а путь их биосинтеза – один из самых полно охарактеризованных путей биосинтеза вторичных метаболитов как на биохимическом, так и на генетическом уровне. Наряду с этими фундаментальными достижениями, мы начинаем осознавать потенциал антоцианов как соединений промышленного значения, как пигментов самих по себе, а также в качестве компонентов функционального питания, способствующих предупреждению и снижению риска развития хронических заболеваний. Долгое время биологическая активность антоцианов была недооценена, в частности, из-за данных об их низкой биодоступности. Однако в ходе исследований было показано, что в организме человека и животных эти соединения активно метаболизируются и биодоступность, оцененная с учетом их метаболитов, превышала 12 %. Экспериментально подтверждено, что антоцианы обладают антиоксидантными, противовоспалительными, гипогликемическими, антимутагенными, антидиабетическими, противораковыми, нейропротекторными свойствами, а также полезны для здоровья глаз. Однако проведенные исследования не всегда могут объяснить молекулярные механизмы действия антоцианов в организме человека. По некоторым данным, наблюдаемые эффекты объясняются действием не антоцианов, а их метаболитов, которые, благодаря своей повышенной биодоступности, могут быть более биологически активными, чем исходные соединения. Высказывается также предположение о положительном эффекте на здоровье человека всего комплекса полифенольных соединений, поступающего в организм в составе растительной пищи. В представленном обзоре суммированы результаты основных направлений исследований антоцианов в качестве компонентов функционального питания. Отдельное внимание уделено результатам генетических исследований синтеза пигментов, данные которых приобретают особую важность в связи с актуализацией селекционных программ, направленных на повышение содержания антоцианов у культурных растений.

Об авторах

Р. С. Юдина
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Е. И. Гордеева
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



О. Ю. Шоева
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



М. А. Тихонова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Научно-исследовательский институт физиологии и фундаментальной медицины
Россия

Новосибирск



Е. К. Хлесткина
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова (ВИР)
Россия

Новосибирск;

Санкт-Петербург



Список литературы

1. ГОСТ Р 52349-2005. Продукты пищевые. Продукты пищевые функциональные. Термины и определения (с Изменением № 1). Дата введения: 2006-07-01.

2. Запрометов М.Н. Основы биохимии фенольных соединений. М.: Высш. шк., 1974.

3. Тараховский Ю.С., Ким Ю.А., Абдрасилов Б.С., Музафаров Е.Н. Флавоноиды: биохимия, биофизика, медицина. Пущино, 2013.

4. Фотев Ю.В., Пивоваров В.Ф., Артемьева А.М., Куликов И.М., Гончарова Ю.К., Сысо А.И., Гончаров Н.П. Концепция создания Российской национальной системы функциональных продуктов питания. Вавиловский журнал генетики и селекции. 2018;22(7): 776-783. DOI 10.18699/VJ18.421.

5. Хлесткина Е.К., Усенко Н.И., Гордеева Е.И., Стабровская О.И., Шарфунова И.Б., Отмахова Ю.С. Маркер-контролируемое получение и производство форм пшеницы с повышенным уровнем биофлавоноидов: оценка продукции для обоснования значимости направления. Вавиловский журнал генетики и селекции. 2017;21(5):545-553. DOI 10.18699/VJ17.25-o.

6. Adisakwattana S., Yibchok-Anun S., Charoenlertkul P., Wongsasiripat N. Cyanidin-3-rutinoside alleviates postprandial hyperglycemia and its synergism with acarbose by inhibition of intestinal alphaglucosidase. J. Clin. Biochem. Nutr. 2011;49:36-41. DOI 10.3164/jcbn.10-116.

7. Andersen O.M., Jordheim M. The anthocyanins. In: Andersen O.M., Markham K.R. (Eds.). Flavonoids: Chemistry, Biochemistry and Applications. Boca Raton, FL: CRC Press, 2006;452-471.

8. Badshah H., Ullah I., Kim S.E., Kim T.H., Lee H.Y., Kim M. Anthocyanins attenuate body weight gain via modulating neuropeptide Y and GABAB1 receptor in rats hypothalamus. Neuropeptides. 2013; 47:347-353. DOI 10.1016/j.npep.2013.06.001.

9. Bartl P., Albreht A., Skrt M., Tremlová B., Ošťádalová M., Šmejkal K., Vovk I., Poklar U.N. Anthocyanins in purple and blue wheat grains and in resulting bread: quantity, composition, and thermal stability. Int. J. Food Sci. Nutr. 2015;66(5):514-519. DOI 10.3109/09637486.2015.1056108.

10. Bulgakov V.P., Avramenko T.V., Tsitsiashvili G.S. Critical analysis of protein signaling networks involved in the regulation of plant secondary metabolism: Focus on anthocyanins. Crit. Rev. Biotechnol. 2017;37(6):685-700. DOI 10.3109/07388551.2016.1141391.

11. Butelli E., Licciardello C., Zhang Y., Liu J., Mackay S., Bailey P., Martin C. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell. 2012;24(3): 1242-1255. DOI 10.1105/tpc.111.095232.

12. Calderaro A., Barreca D., Bellocco E., Smeriglio A., Trombetta D., Laganà G. Colored phytonutrients: role and applications in the functional foods of anthocyanins. In: Nabavi S.M., Suntar I., Barreca D., Khan H. (Eds.). Phytonutrients in Food: From Traditional to Rational Usage. Woodhead Publ., 2020;177-195. DOI 10.1016/B978-0-12-815354-3.00011-3.

13. Celli G.B., Ghanem A., Brooks M.S. A theoretical physiologically based pharmacokinetic approach for modeling the fate of anthocyanins in vivo. Crit. Rev. Food Sci. Nutr. 2017;57(15):3197-3207. DOI 10.1080/10408398.2015.1104290.

14. Czank C., Cassidy A., Zhang Q., Morrison D.J., Preston T., Kroon P.A., Botting N.P., Kay C.D. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A (13)C-tracer study. Am. J. Clin. Nutr. 2013;97:995-1003. DOI 10.3945/ajcn.112.049247.

15. Day A., Canada F., Diaz J., Kroon P., Mclauchlan R., Faulds C., Plumb G.W., Morgan M.R., Williamson G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000;468:166-170. DOI 10.1016/s0014-5793(00)01211-4.

16. Elattar T.M., Virji A.S. The effect of red wine and its components on growth and proliferation of human oral squamous carcinoma cells. Anticancer Res. 1999;19(6B):5407-5414.

17. Erlund I., Koli R., Alfthan G., Marniemi J. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am. J. Clin. Nutr. 2008;87(2):323-331. DOI 10.1093/ajcn/87.2.323.

18. Espley R.V. Regulation of anthocyanin accumulation in apple by the transcription factor MdMYB10. Thesis PhD (Biological Sciences), University of Auckland, 2009. http://hdl.handle.net/2292/5170

19. Fang J. Bioavailability of anthocyanins. Drug Metab. Rev. 2014;46: 508-520. DOI 10.3109/03602532.2014.978080.

20. Faria A., Pestana D., Azevedo J., Martel F., de Freitas V., Azevedo I., Mateus N., Calhau C. Absorption of anthocyanins through intestinal epithelial cells – putative involvement of GLUT2. Mol. Nutr. Food Res. 2009;53:1430-1437. DOI 10.1002/mnfr.200900007.

21. Fukumoto L.R., Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000;48(8): 3597-3604. DOI 10.1021/jf000220w.

22. Ghosh D., Konishi T. Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac. J. Clin. Nutr. 2007;16(2): 200-208.

23. Guo H., Guo J., Jiang X., Li Z., Ling W. Cyanidin-3-O-β-glucoside, a typical anthocyanin, exhibits antilipolytic effects in 3T3-L1 adipocytes during hyperglycemia: Involvement of FoxO1-mediated transcription of adipose triglyceride lipase. Food Chem. Toxicol. 2012; 50(9):3040-3047. DOI 10.1016/j.fct.2012.06.015.

24. Hagiwara A., Miyashita K., Nakanishi T., Sano M., Tamano S., Kadota T., Koda T., Nakamura M., Imaida K., Ito N., Shirai T. Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-associated colorectal carcinogenesis in male F344 rats pretreated with 1,2-dimethylhydrazine. Cancer Lett. 2001;171:17-25. DOI 10.1016/s0304-3835(01)00510-9.

25. Hatier J.H.B., Gould K.S. Anthocyanin function in vegetative organs. In: Winefield C., Davies K., Gould K. (Eds.). Anthocyanins. New York: Springer, 2008;1-19. DOI 10.1007/978-0-387-77335-3_1.

26. He J., Magnuson B.A., Giusti M.M. Analysis of anthocyanins in rat intestinal contents: impact of anthocyanin chemical structure on fecal excretion. J. Agric. Food Chem. 2005;53:2859-2866. DOI 10.1021/jf0479923.

27. Hichri I., Barrieu F., Bogs J., Kappel C., Delrot S., Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J. Exp. Bot. 2011;62(8):2465-2483. DOI 10.1093/jxb/erq442.

28. Hidalgo M., Oruna-Concha M.J., Kolida S., Walton G.E., Kallithraka S., Spencer J.P., de Pascual-Teresa S. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J. Agri. Food Chem. 2012;60(15):3882-3890. DOI 10.1021/jf3002153.

29. Horie K., Nanashima N., Maeda H. Phytoestrogenic effects of blackcurrant anthocyanins increased endothelial nitric oxide synthase (eNOS) expression in human endothelial cells and ovariectomized rats. Molecules. 2019;24(7):1259. DOI 10.3390/molecules24071259.

30. Hou D.X. Potential mechanisms of cancer chemoprevention by anthocyanins. Curr. Mol. Med. 2003;3(2):149-159. DOI 10.2174/1566524033361555.

31. Hou D.X., Yanagita T., Uto T., Masuzaki S., Fujii M. Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structure-activity relationship and molecular mechanisms involved. Biochem. Pharmacol. 2005;70(3):417-425. DOI 10.1016/j.bcp.2005.05.003.

32. Jang Y.P., Zhou J., Nakanishi K., Sparrow J.R. Anthocyanins protect against A2E photooxidation and membrane permeabilization in retinal pigment cells. Photochem. Photobiol. 2005;81:529-536. DOI 10.1562/2004-12-14-RA-402.

33. Jiang W., Liu T., Nan W., Jeewani D.C., Niu Y., Li C., Wang Y., Shi X., Wang C., Wang J., Li Y., Gao X., Wang Z. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. J. Exp. Bot. 2018;69(10):2555-2567. DOI 10.1093/jxb/ery101.

34. Joseph J.A., Shukitt-Hale B., Denisova N.A., Bielinski D., Martin A., McEwen J.J., Bickford P.C. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J. Neurosci. 1999;19(18):8114-8121. DOI 10.1523/JNEUROSCI.19-18-08114.1999.

35. Kamonpatana K., Giusti M.M., Chitchumroonchokchai C., MorenoCruz M., Riedl K.M., Kumar P., Failla M.L. Susceptibility of anthocyanins to ex vivo degradation in human saliva. Food Chem. 2012; 135:738-747. DOI 10.1016/j.foodchem.2012.04.110.

36. Karlsen A., Paur I., Bøhn S.K., Sakhi A.K., Borge G.I., Serafini M., Erlund I., Laake P., Tonstad S., Blomhoff R. Bilberry juice modulates plasma concentration of NF-κB related inflammatory markers in subjects at increased risk of CVD. Eur. J. Nutr. 2010;49(6):345-355. DOI 10.1007/s00394-010-0092-0.

37. Kähkönen M.P., Heinonen M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 2003;51(3):628-633. DOI 10.1021/jf025551i.

38. Kent K., Charlton K., Roodenrys S., Batterham M., Potter J., Traynor V., Gilbert H., Morgan O., Richards R. Consumption of anthocyaninrich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur. J. Nutr. 2017;56: 333-341. DOI 10.1007/s00394-015-1083-y.

39. Lee J., Lee H.K., Kim C.Y., Hong Y.J., Choe C.M., You T.W., Seong G.J. Purified high-dose anthocyanoside oligomer administration improves nocturnal vision and clinical symptoms in myopia subjects. Br. J. Nutr. 2005;93:895-899. DOI 10.1079/bjn20051438.

40. Lefevre M., Wiles J.E., Zhang X., Howard L.R., Gupta S., Smith A.A., Ju Z.Y., DeLany J. Gene expression microarray analysis of the effects of grape anthocyanins in mice: a test of a hypothesis-generating paradigm. Metabolism. 2008;57:S52-S57. DOI 10.1016/j.metabol.2008.03.005.

41. Li D., Wang P., Luo Y., Zhao M., Chen F. Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit. Rev. Food Sci. Nutr. 2017;57(8):1729-1741. DOI 10.1080/10408398.2015.1030064.

42. Lila M.A., Raskin I. Health‐related interactions of phytochemicals. J. Food Sci. 2005;70(1):R20-R27. DOI 10.1111/j.1365-2621.2005.tb09054.x.

43. Liu R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 2003; 78(3):517S-520S. DOI 10.1093/ajcn/78.3.517S.

44. Liu Y., Li D., Zhang Y., Sun R., Xia M. Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction. Am. J. Physiol. Endocrinol. Metab. 2014;306(8):E975-E988. DOI 10.1152/ajpendo.00699.2013.

45. Lucioli S. Anthocyanins: mechanism of action and therapeutic efficacy. In: Capasso A. (Ed.). Medicinal Plants as Antioxidant Agents: Understanding Their Mechanism of Action and Therapeutic Efficacy. Research Signpost. Kerala, India, 2012;27-57.

46. Ma D., Zhang J., Li Y., Wang C. Quality of noodles made from colourgrained wheat. Czech. J. Food Sci. 2018;36:314-320. DOI 10.17221/130/2017-CJFS.

47. Manach C., Williamson G., Morand C., Scalbert A., Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005;81:230S-242S. DOI 10.1093/ajcn/81.1.243S.

48. Matsumoto H., Nakamura Y., Tachibanaki S., Kawamura S., Hirayama M. Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin. J. Agric. Food Chem. 2003;51(12):3560-3563. DOI 10.1021/jf034132y.

49. Mauray A., Felgines C., Morand C., Mazur A., Scalbert A., Milenkovic D. Bilberry anthocyanin-rich extract alters expression of genes related to atherosclerosis development in aorta of apo E-deficient mice. Nutr. Metab. Cardiovasc. Dis. 2012;22:72-80. DOI 10.1016/j.numecd.2010.04.011.

50. McGhie T.K., Walton M.C. The bioavailability and absorption of anthocyanins: towards a better understanding. Mol. Nutr. Food Res. 2007;51:702-713. DOI 10.1002/mnfr.200700092.

51. Min J., Yu S.W., Baek S.H., Nair K.M., Bae O.N., Bhatt A., Majid A. Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia. Neurosci. Lett. 2011;500(3):157-161. DOI 10.1016/j.neulet.2011.05.048.

52. Mouria M., Gukovskaya A., Jung Y., Buechler P., Hines O., Reber H., Pandol S. Food‐derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int. J. Cancer. 2002;98(5):761-769. DOI 10.1002/ijc.10202.

53. Nakaishi H., Matsumoto H., Tominaga S., Hirayama M. Effects of black currant anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. Altern. Med. Rev. 2000;5(6):553-562.

54. Oikawa T., Maeda H., Oguchi T., Yamaguchi T., Tanabe N., Ebana K., Yano M., Ebitani T., Izawa T. The birth of a black rice gene and its local spread by introgression. Plant Cell. 2015;27:2401-2414. DOI 10.1105/tpc.15.00310.

55. Oliveira H., Roma-Rodrigues C., Santos A., Veigas B., Brás N., Faria A., Calhau C., de Freitas V., Baptista P.V., Mateus N., Fernandes A.R., Fernandes I. GLUT1 and GLUT3 involvement in anthocyanin gastric transport-Nanobased targeted approach. Sci. Rep. 2019;9(1):1-14. DOI 10.1038/s41598-018-37283-2.

56. Parichatikanond W., Pinthong D., Mangmool S. Blockade of the reninangiotensin system with delphinidin, cyanin, and quercetin. Planta Med. 2012;78:1626-1632. DOI 10.1055/s-0032-1315198.

57. Pasqualone A., Bianco A.M., Paradiso V.M., Summo C., Gabarcorta G., Caponio F., Blanco A. Production and characterization of functional biscuits obtained from purple wheat. Food Chem. 2015;180:64-70. DOI 10.1016/j.foodchem.2015.02.025.

58. Payyavula R.S., Singh R.K., Navarre D.A. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. J. Exp. Bot. 2013;64(16):5115-5131. DOI 10.1093/jxb/ert303.

59. Qin Y., Zhai Q., Li Y., Cao M., Xu Y., Zhao K., Wang T. Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool. Biomed. Pharmacother. 2018;103:1223-1230. DOI 10.1016/j.biopha.2018.04.137.

60. Ramos P.R., Herrera R., Moya-Leуn M.-A. Anthocyanins: food sources and benefits to consumer’s health. In: Warner L.M. (Ed.). Handbook of Anthocyanins: Food Sources, Chemical Applications and Health Benefits (Biochemistry Research Trends). Hauppauge; New York: Nova Science Publishers, Inc., 2014.

61. Rausher M.D. The evolution of flavonoids and their genes. In: Grotewold E. (Ed.). The Science of Flavonoids. New York: Springer, 2006;175-211. DOI 10.1007/978-0-387-28822-2_7.

62. Rehman S.U., Shah S.A., Ali T., Chung J.I., Kim M.O. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol. Neurobiol. 2017;54(1):255-271. DOI 10.1007/s12035-015-9604-5.

63. Renaud S., de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523-1526.

64. Sandoval-Ramírez B.A., Catalán Ú., Fernández-Castillejo S., Rubió L., Macià A., Solà R. Anthocyanin tissue bioavailability in animals: possible implications for human health. A systematic review. J. Agric. Food Chem. 2018;66(44):11531-11543. DOI 10.1021/acs.jafc.8b04014.

65. Sangsefidi Z.S., Hosseinzadeh M., Ranjbar A.M., Akhondi-Meybodi M., Fallahzadeh H., Mozaffari-Khosravi H. The effect of total anthocyanin-base standardized (Cornus mas L.) fruit extract on liver function, tumor necrosis factor α, malondealdehyde, and adiponectin in patients with non-alcoholic fatty liver: a study protocol for a double-blind randomized clinical trial. Nutr. J. 2019;18(1):39. DOI 10.1186/s12937-019-0465-z.

66. Sasaki R., Nishimura N., Hoshino H., Isa Y., Kadowaki M., Ichi T., Horio F. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem. Pharmacol. 2007;74(11):1619-1627. DOI 10.1016/j.bcp.2007.08.008.

67. Seeram N.P., Adams L.S., Hardy M.L., Heber D. Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J. Agri. Food Chem. 2004;52(9):2512-2517. DOI 10.1021/jf0352778.

68. Shih P.H., Chan Y.C., Liao J.W., Wang M.F., Yen G.C. Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry (Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer’s disease. J. Nutr. Biochem. 2010;21(7):598-605. DOI 10.1016/j.jnutbio.2009.03.008.

69. Shih P.H., Yeh C.T., Yen G.C. Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J. Agric. Food Chem. 2007;55(23):9427-9435. DOI 10.1021/jf071933i.

70. Shin D.H., Choi M.G., Kim K., Bang G., Cho M., Choi S.-B., Choi G., Park Y.-I. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett. 2013;587:1543-1547. DOI 10.1016/j.febslet.2013.03.037.

71. Shoeva O.Y., Gordeeva E.I., Khlestkina E.K. The regulation of anthocyanin synthesis in the wheat pericarp. Molecules. 2014;19(12): 20266-20279. DOI 10.3390/molecules191220266.

72. Smeriglio A., Barreca D., Bellocco E., Trombetta D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res. 2016; 30(8):1265-1286. DOI 10.1002/ptr.5642.

73. Smith M., Marley K., Seigler D., Singletary K., Meline B. Bioactive properties of wild blueberry fruits. J. Food Sci. 2000;65:352-356. DOI 10.1111/j.1365-2621.2000.tb16006.x.

74. Song F.L., Zhu Y.N., Shi Z.Y., Tian J.J., Deng X.J., Ren J., Andrews M.C., Ni H.Y., Ling W.H., Yang Y. Plant food anthocyanins inhibit platelet granule secretion in hypercholesterolaemia: involving the signaling pathway of PI3K-Akt. Thromb. Haemost. 2014; 112:981-991. DOI 10.1160/TH13-12-1002.

75. Spencer J.P.E. The impact of fruit flavonoids on memory and cognition. British J. Nutr. 2010;104:S40-S47. DOI 10.1017/S0007114510003934.

76. Steffen Y., Gruber C., Schewe T., Sies H. Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch. Biochem. Biophys. 2008;469:209-219. DOI 10.1016/j.abb.2007.10.012.

77. Strathearn K.E., Yousef G.G., Grace M.H., Roy S.L., Tambe M.A., Ferruzzi M.G., Rochet J.C. Neuroprotective effects of anthocyaninand proanthocyanidin-rich extracts in cellular models of Parkinson’s disease. Brain Res. 2014;1555:60-77. DOI 10.1016/j.brainres.2014.01.047.

78. Strygina K.V., Börner A., Khlestkina E.K. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biol. 2017;17(1):184. DOI 10.1186/s12870-017-1122-3.

79. Sui X., Zhang Y., Zhou W. In vitro and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic α-amylase. J. Funct. Foods. 2016;21:50-57. DOI 10.1016/j.jff.2015.11.042.

80. Sun C.D., Zhang B., Zhang J.K., Xu C.J., Wu Y.L., Li X., Chen K.S. Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. J. Med. Food. 2012;15(3):288-298. DOI 10.1089/jmf.2011.1806.

81. Sun X.-H., Zhou T.-T., Wei C.-H., Lan W.-Q., Zhao Y., Pan Y.-J., Wu V.C.H. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control. 2018;94:155-161. DOI 10.1016/j.foodcont.2018.07.012.

82. Takayama F., Nakamoto K., Kawasaki H., Mankura M., Egashira T., Ueki K., Mori A. Beneficial effects of Vitis coignetiae Pulliat leaves on nonalcoholic steatohepatitis in a rat model. Acta Med. Okayama. 2009;63(2):105-111. DOI 10.18926/AMO/31835.

83. Takikawa M., Inoue S., Horio F., Tsuda T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J. Nutr. 2010;140:527-533. DOI 10.3945/jn.109.118216.

84. Tarozzi A., Morroni F., Merlicco A., Bolondi C., Teti G., Falconi M., Hrelia P. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25–35) oligomer-induced toxicity. Neurosci. Lett. 2010;473(2):72-76. DOI 10.1016/j.neulet.2010.02.006.

85. Tenditnik M.V., Tikhonova M.A., Pavlov K.S., Amstislavskaya T.G., Khlestkina E.K. Evaluating the neuroprotective potential of wheat grain with high anthocyanin content in correction of behavioral deficits induced by amyloid-beta neurotoxicity in mice. In: Belyaev conference: A triumphant event in commemoration of the centenary of the birth of Academician Dmitri Belyaev (August 7–10, 2017, Novosibirsk, Russia): Abstracts. Novosibirsk, 2017.

86. Toufektsian M., Lorgeril M.D., Nagy N. Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemiareperfusion injury. J. Nutr. 2008;138:747-752. DOI 10.1093/jn/138.4.747.

87. Tsuda T. Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants. 2016;5(2):13. DOI 10.3390/antiox5020013.

88. Tsuda T., Ueno Y., Aoki H., Koda T., Horio F., Takahashi N., Kawada T., Osawa T. Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochem. Biophys. Res. Commun. 2004;316:149-157. DOI 10.1016/j.bbrc.2004.02.031.

89. Wallace T.C., Slavin M., Frankenfeld C.L. Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients. 2016; 8(1):32-45. DOI 10.3390/nu8010032.

90. Wang C.J., Wang J.M., Lin W.L., Chu C.Y., Chou F.P., Tseng T.H. Protective effect of Hibiscus anthocyanins against tert-butyl hydroperoxide-induced hepatic toxicity in rats. Food Chem. Toxicol. 2000; 38(5):411-416. DOI 10.1016/S0278-6915(00)00011-9.

91. Wang H., Cao G., Prior R.L. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 1997;45(2):304-309. DOI 10.1021/jf960421t.

92. Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126(2):485-493. DOI 10.1104/pp.126.2.485.

93. Wu T., Qi X., Liu Y., Guo J., Zhu R., Chen W., Yu T. Dietary supplementation with purified mulberry (Morus australis Poir) anthocyanins suppresses body weight gain in high-fat diet fed C57BL/6 mice. Food Chem. 2013;141(1):482-487. DOI 10.1016/j.foodchem.2013.03.046.

94. Xu J.W., Ikeda K., Yamori Y. Upregulation of endothelial nitric oxide synthase by cyanidin-3-glucoside, a typical anthocyanin pigment. Hypertension. 2004;44:217-222. DOI 10.1161/01.HYP.0000135868.38343.c6.

95. Yang M., Koo S.I., Song W.O., Chun O.K. Food matrix affecting anthocyanin bioavailability: review. Curr. Med. Chem. 2011;18(2):291-300. DOI 10.2174/092986711794088380.

96. Zhang B., Kang M., Xie Q., Xu B., Sun C., Chen K., Wu Y. Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation. J. Agric. Food Chem. 2010;59(2):537-545. DOI 10.1021/jf1035405.

97. Zhang B., Schrader A. TRANSPARENT TESTA GLABRA 1-dependent regulation of flavonoid biosynthesis. Plants. 2017;6(4):65. DOI 10.3390/plants6040065.

98. Zhu F. Anthocyanins in cereals: сomposition and health effects. Food Res. Int. 2018;109:232-249. DOI 10.1016/j.foodres.2018.04.015.

99. Zhu Y., Huang X., Zhang Y., Wang Y., Liu Y., Sun R., Xia M. Anthocyanin supplementation improves HDL-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia. J. Clin. Endocrinol. Metab. 2014;99(2):561-569. DOI 10.1210/jc.2013-2845.

100. Zou T.-B., Feng D., Song G., Li H.-W., Tang H.-W., Ling W.-H. The role of sodium-dependent glucose transporter 1 and glucose transporter 2 in the absorption of cyanidin-3-O-beta-glucoside in Caco-2 cells. Nutrients. 2014;6(10):4165-4177. DOI 10.3390/nu6104165.


Рецензия

Просмотров: 2235


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)