Preview

Vavilov Journal of Genetics and Breeding

Advanced search

VARIABILITY OF A FRAGMENT OF THE ACID VACUOLAR INVERTASE PAIN-1 GENE IN POTATO CULTIVARS

Abstract

Acid vacuolar invertase Pain-1 participates in the regulation of starch and sucrose contents in cells. This enzyme is also involved in plant response to abiotic stress. For the first time Pain-1 gene fragment (exon V – exon VII) polymorphism was determined in 19 potato varieties. A total of 25 SNPs were detected. A new SNP, С1895, was found in exon VII. Five of eight SNPs located in exons led to amino acid substitutions. Three of them were radical. It was shown that the conservative C-terminal domain contained three variable amino acids.

About the Authors

M. A. Slugina
Bioengineering Center, Russian Academy of Sciences, Moscow, Russia Chair of Biotechnology, Biological Department, Lomonosov State University, Moscow, Russia
Russian Federation


E. Z. Kochieva
Bioengineering Center, Russian Academy of Sciences, Moscow, Russia Chair of Biotechnology, Biological Department, Lomonosov State University, Moscow, Russia
Russian Federation


References

1. Симаков Е.А., Анисимов Б.В., Еланский С.Н., Зейрук В.Н., Кузнецова М.А., Мальцев С.В., Пшеченков К.А., Склярова Н.П., Спиглазова С.Ю., Яшина И.М. Сорта картофеля, возделываемые в России. M.: Агроспас, 2010. 128 c.

2. Слугина М.А., Снигирь Е.А., Рыжова Н.Н., Кочиева Е.З. Структура и полиморфизм фрагмента локуса Pain-1, кодирующего вакуолярную инвертазу Solanum // Молекуляр. биология. 2013. T. 47. C. 243–250.

3. Albacete A., Grosskinsky D.K., Roitsch T. Trick and treat: A review on the function and regulation of plant invertases in the abiotic stress response // Phyton – Annales Rei Botanicae. 2011. V. 50. P. 181–204.

4. Castrillόn-Arbeláez P.A., Martínez-Gallardo N., Arnaut H.A., Tiessen A., Délano-Frier J.P. Metabolic and enzymatic chan-ges associated with carbon mobilization, utilization and replenishment triggered in grain amaranth (Amaranthus cruentus) in response to partial defoliation by mechanical injury or insect herbivory // Plant Biol. 2012. V. 12. P. 163–185.

5. Draffehn A.M., Sebastian M., Li L., Gebhardt C. Natural diversity of potato (Solanum tuberosum ) invertases // BMC Plant Biol. 2010. V. 10. P. 271–286.

6. Elliott K.J., Butler W.O., Dickinson C.D., Konno Y. et al. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening // Plant Mol. Biol. 1993. V. 21. P. 515–524.

7. Ji X., Ende van den W., Laere van A. et al. Structure, evolution and expression of the two invertase gene families of rice // Mol. Evol. 2005. V. 60. P. 615–634.

8. Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development // Curr. Opin. Plant Biol. 2004. V. 7. P. 235–246.

9. Kumar S., Tamura K., Peterson D. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods // Mol. Biol. Evol. 2011. V. 28. No. 10. P. 2731–2739.

10. Li L., Paulo M-J., Strahwald J., Lubeck J., Natural H-R. DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield // Theor. Appl. Genet. 2008. V. 116. P. 1167–1181.

11. Ruan Y-L., Jin Y., Yang Y-J., Li G-J., Boyer J.S. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat // Mol. Plant. 2010. V. 3. P. 942–955.


Review

Views: 632


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)