1. Abeles F.B., Morgan P.W., Saltveit Jr. M.E. Ethylene in Plant Biology. San Diego, CA: Academic Press, 2012.
2. Alatorre-Cobos F., Cruz-Ramírez A., Hayden C.A., Pérez-Torres C.-A., Chauvin A.-L., Ibarra-Laclette E., Alva-Cortés E., Jorgensen R.A., Herrera-Estrella L. Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame. J. Exp. Bot. 2012;63(14): 5203-5221. https://doi.org/10.1093/jxb/ers180.
3. Andreev D.E., O’Connor P.B., Loughran G., Dmitriev S.E., Baranov P.V., Shatsky I.N. Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Nucleic Acids Res. 2017; 45(2):513-526. https://doi.org/10.1093/nar/gkw1190.
4. Archer S.K., Shirokikh N.E., Beilharz T.H., Preiss T. Dynamics of ribosome scanning and recycling revealed by translation complex profiling. Nature. 2016;535(7613):570-574. https://doi.org/10.1038/nature18647.
5. Baek Y.S., Goodrich L.V., Brown P.J., James B.T., Moose S.P., Lambert K.N., Riechers D.E. Transcriptome profiling and genome-wide association studies reveal GSTs and other defense genes involved in multiple signaling pathways induced by herbicides Safener in grain sorghum. Front. Plant Sci. 2019;10:192. https://doi.org/10.3389/fpls.2019.00192.
6. Brar G.A., Weissman J.S. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 2015; 16:651-664. https://doi.org/10.1038/nrm4069.
7. Brar G.A., Yassour M., Friedman N., Regev A., Ingolia N.T., Weissman J.S. High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science. 2012;335(6068):552-557. https://doi.org/10.1126/science.1215110.
8. Calviello L., Mukherjee N., Wyler E., Zauber H., Hirsekorn A., Selbach M., Landthaler M., Obermayer B., Ohler U. Detecting actively translated open reading frames in ribosome profiling data. Nat. Methods. 2016;13:165-170. https://doi.org/10.1038/nmeth.3688.
9. Carja O., Xing T., Wallace E.W.J., Plotkin J.B., Shah P. Riboviz: analysis and visualization of ribosome profiling datasets. BMC Bioinformatics. 2017;18:461. https://doi.org/10.1186/s12859-017-1873-8.
10. Chhangawala S., Rudy G., Mason C.E., Rosenfeld J.A. The impact of read length on quantification of differentially expressed genes and splice junction detection. Genome Biol. 2015;16:131. https://doi.org/10.1186/s13059-015-0697-y.
11. Chung B.Y., Hardcastle T.J., Jones J.D., Irigoyen N., Firth A.E., Baulcombe D.C., Brierley I. The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis. RNA. 2015;21:1731-1745. https://doi.org/10.1261/rna.052548.115.
12. Efroni I., Birnbaum K.D. The potential of single-cell profiling in plants. Genome Biol. 2016;17(1):65. https://doi.org/10.1186/s13059-016-0931-2.
13. Faridani O.R., Abdullayev I., Hagemann-Jensen M., Schell J.P., Lanner F., Sandberg R. Single-cell sequencing of the small-RNA transcriptome. Nat. Biotechnol. 2016;34:1264-1266. https://doi.org/10.1038/nbt.3701.
14. Gawroński P., Jensen P.E., Karpiński S., Leister D., Scharff L.B. Pausing of chloroplast ribosomes is induced by multiple features and is linked to the assembly of photosynthetic complexes. Plant Physiol. 2018;176:2557-2569. https://doi.org/10.1104/pp.17.01564.
15. Hanfrey C., Franceschetti M., Mayer M.J., Illingworth C., Michael A.J. Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. J. Biol. Chem. 2002; 277(46):44131-44139. https://doi.org/10.1074/jbc.M206161200.
16. Heiman M., Kulicke R., Fenster R.J., Greengard P., Heintz N. Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP). Nat. Protoc. 2014;9(6):1282-1291. https://doi.org/10.1038/nprot.2014.085.
17. Hornstein N., Torres D., Das Sharma S., Tang G., Canoll P., Sims P.A. Ligation-free ribosome profiling of cell type-specific translation in the brain. Genome Biol. 2016;17:149. https://doi.org/10.1186/s13059-0161005-1.
18. Hsu P.Y., Calviello L., Wu H.-Y.L., Li F.-W., Rothfels C.J., Ohler U., Benfey P.N. Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2016;113(45):E7126-E7135. https://doi.org/10.1073/pnas.1614788113.
19. Imai A., Hanzawa Y., Komura M., Yamamoto K.T., Komeda Y., Takahashi T. The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development. 2006;133:3575-3585. https://doi.org/10.1242/dev.02535.
20. Ingolia N.T., Ghaemmaghami S., Newman J.R., Weissman J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324(5924):218-223. https://doi.org/10.1126/science.1168978.
21. Ingolia N.T., Lareau L.F., Weissman J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell. 2011;147:789-802. https://doi.org/10.1016/j.cell.2011.10.002.
22. Jackson R., Standart N. The awesome power of ribosome profiling. RNA. 2015;21:652-654. https://doi.org/10.1261/rna.049908.115.
23. Jan C.H., Williams C.C., Weissman J.S. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science. 2014;346(6210):1257521. https://doi.org/10.1126/science.1257521.
24. Jiao Y., Meyerowitz E.M. Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol. Syst. Biol. 2010;6:419. https://doi.org/10.1038/msb.2010.76.
25. Juntawong P., Girke T., Bazin J., Bailey-Serres J. Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2014;111(1):E203-E212. https://doi.org/10.1073/pnas.1317811111.
26. Kahles A., Behr J., Rätsch G. MMR: a tool for read multi-mapper resolution. Bioinformatics. 2016;32(5):770-772. https://doi.org/10.1093/bioinformatics/btv624.
27. Kang W.-H., Sim Y.M., Koo N., Nam J.-Y., Lee J., Kim N., Jang H., Kim Y.-M., Yeom S.-I. Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of Capsicum annuum L. Sci. Data. 2020;7:1-7. https://doi.org/10.1038/s41597-020-0352-7.
28. Kazan K., Gardiner D.M. Transcriptomics of cereal - Fusarium graminearum interactions: what we have learned so far. Mol. Plant Pathol. 2018;19(3):764-778. https://doi.org/10.1111/mpp.12561.
29. Kuo T.C.Y., Hatakeyama M., Tameshige T., Shimizu K.K., Sese J. Homeolog expression quantification methods for allopolyploids. Brief. Bioinform. 2018;21(2):395-407. https://doi.org/10.1093/bib/bby121.
30. Kurihara Y., Makita Y., Kawashima M., Fujita T., Iwasaki S., Matsui M. Transcripts from downstream alternative transcription start sites evade uORF-mediated inhibition of gene expression in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2018;115(30):7831-7836. https://doi.org/10.1073/pnas.1804971115.
31. Lanver D., Müller A.N., Happel P., Schweizer G., Haas F.B., Franitza M., Pellegrin C., Reissmann S., Altmüller J., Rensing S.A. The biotrophic development of Ustilago maydis studied by RNA-seq analysis. Plant Cell. 2018;30(2):300-323. https://doi.org/10.1105/tpc.17.00764.
32. Lauria F., Tebaldi T., Bernabò P., Groen E.J.N., Gillingwater T.H., Viero G. riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data. PLoS Comput. Biol. 2018;14. e1006169e1006169.
33. Lei L., Shi J., Chen J., Zhang M., Sun S., Xie S., Li X., Zeng B., Peng L., Hauck A. Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress. Plant J. 2015; 84(6):1206-1218. https://doi.org/10.1111/tpj.13073.
34. Liu M.-J., Wu S.-H., Wu J.-F., Lin W.-D., Wu Y.-C., Tsai T.-Y., Tsai H.-L., Wu S.-H. Translational landscape of photomorphogenic Arabidopsis. Plant Cell. 2013;25(10):3699-3710. https://doi.org/10.1105/tpc.113.114769.
35. Lukoszek R., Feist P., Ignatova Z. Insights into the adaptive response of Arabidopsis thaliana to prolonged thermal stress by ribosomal profiling and RNA-Seq. BMC Plant Biol. 2016;16:221. https://doi.org/10.1186/s12870-016-0915-0.
36. Marioni J.C., Mason C.E., Mane S.M., Stephens M., Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18:1509-1517. https://doi.org/10.1101/gr.079558.108.
37. McGlincy N.J., Ingolia N.T. Transcriptome-wide measurement of translation by ribosome profiling. Methods. 2017;126:112-129. https://doi.org/10.1016/j.ymeth.2017.05.028.
38. Merchante C., Brumos J., Yun J., Hu Q., Spencer K.R., Enríquez P., Binder B.M., Heber S., Stepanova A.N., Alonso J.M. Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell. 2015;163(3):684-697. https://doi.org/10.1016/j.cell.2015.09.036.
39. Michel A.M., Mullan J.P.A., Velayudhan V., O’Connor P.B.F., DonohueC.A., Baranov P.V. RiboGalaxy: A browser based platform for the alignment, analysis and visualization of ribosome profiling data. RNA Biol. 2016;13(3):316-319. https://doi.org/10.1080/15476286.2016.1141862.
40. Mironova V., Xu J. A single-cell view of tissue regeneration in plants. Curr. Opin. Plant Biol. 2019;52:149-154. https://doi.org/10.1016/j.pbi.2019.09.003.
41. Mortazavi A., Williams B.A., McCue K., Schaeffer L., Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods. 2008;5:621-628. https://doi.org/10.1038/nmeth.1226.
42. Mustroph A., Bailey-Serres J. The Arabidopsis translatome cell-specific mRNA atlas: Mining suberin and cutin lipid monomer biosynthesis genes as an example for data application. Plant Signal. Behav. 2010;5(3):320-324. https://doi.org/10.4161/psb.5.3.11187.
43. Pfeifer M., Kugler K.G., Sandve S.R., Zhan B., Rudi H., Hvidsten T.R., Mayer K.F.X., Olsen O.-A. Genome interplay in the grain transcriptome of hexaploid bread wheat. Science. 2014;345(6194):1250091. https://doi.org/10.1126/science.1250091.
44. Ramírez-González R.H., Borrill P., Lang D., Harrington S.A., Brinton J., Venturini L., Davey M., Jacobs J., van Ex F., Pasha A., Khedikar Y., Robinson S.J., Cory A.T., Florio T., Concia L., Juery C., Schoonbeek H., Steuernagel B., Xiang D., Ridout C.J., Chalhoub B., Mayer K.F.X., Benhamed M., Latrasse D., Bendahmane A., International Wheat Genome Sequencing Consortium; Wulff B.B.H., Appels R., Tiwari V., Datla R., Choulet F., Pozniak C.J., Provart N.J., Sharpe A.G., Paux E., Spannagl M., Bräutigam A., Uauy C. The transcriptional landscape of polyploid wheat. Science. 2018;361(6403): eaar6089. https://doi.org/10.1126/science.aar6089.
45. Rooijers K., Loayza-Puch F., Nijtmans L.G., Agami R. Ribosome profiling reveals features of normal and disease-associated mitochondrial translation. Nat. Commun. 2013;4:2886. https://doi.org/10.1038/ncomms3886.
46. Saliba A.E., Westermann A.J., Gorski S.A., Vogel J. Single-cell RNAseq: advances and future challenges. Nucleic Acids Res. 2014; 42(14):8845-8860. https://doi.org/10.1093/nar/gku555.
47. Schenk P.M., Kazan K., Wilson I., Anderson J.P., Richmond T., Somerville S.C., Manners J.M. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA. 2000;97(21):11655-11660. https://doi.org/10.1073/pnas.97.21.11655.
48. Shamimuzzaman M., Vodkin L. Ribosome profiling reveals changes in translational status of soybean transcripts during immature cotyledon development. PLoS One. 2018;13(3):e0194596. https://doi.org/10.1371/journal.pone.0194596.
49. Stern-Ginossar N., Weisburd B., Michalski A., Le V.T.K., Hein M.Y., Huang S.-X., Ma M., Shen B., Qian S.-B., Hengel H. Decoding human cytomegalovirus. Science. 2012;338(6110):1088-1093. https://doi.org/10.1126/science.1227919.
50. Wang H., Wang Y., Xie Z. Computational resources for ribosome profiling: from database to Web server and software. Brief. Bioinform. 2017;20(1):144-155. https://doi.org/10.1093/bib/bbx093.
51. Wang Z., Gerstein M., Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009;10:57-63. https://doi.org/10.1038/nrg2484.
52. Willems P., Ndah E., Jonckheere V., Stael S., Sticker A., Martens L., van Breusegem F., Gevaert K., van Damme P. N-terminal proteomics assisted profiling of the unexplored translation initiation landscape in Arabidopsis thaliana. Mol. Cell. Proteomics. 2017;16(6):10641080. https://doi.org/10.1074/mcp.M116.066662.
53. Wood T.E., Takebayashi N., Barker M.S., Mayrose I., Greenspoon P.B., Rieseberg L.H. The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA. 2009;106(33):13875-13879. https://doi.org/10.1073/pnas.0811575106.
54. Wu H.-Y.L., Song G., Walley J.W., Hsu P.Y. The tomato translational landscape revealed by transcriptome assembly and ribosome profiling. Plant Physiol. 2019;181(1):367-380. https://doi.org/10.1104/pp.19.00541.
55. Xu G., Greene G.H., Yoo H., Liu L., Marqués J., Motley J., Dong X. Global translational reprogramming is a fundamental layer of immune regulation in plants. Nature. 2017;545:487.
56. Yoo H., Greene G.H., Yuan M., Xu G., Burton D., Liu L., Marqués J., Dong X. Translational regulation of metabolic dynamics during effector-triggered immunity. Mol. Plant. 2019;13(1):88-98. https://doi.org/10.1016/j.molp.2019.09.009.
57. Zoschke R., Watkins K.P., Barkan A. A rapid ribosome profiling method elucidates chloroplast ribosome behavior in vivo. Plant Cell. 2013;25(6):2265-2275. https://doi.org/10.1105/tpc.113.111567.
58. Zumaquero A., Kanematsu S., Nakayashiki H., Matas A., MartínezFerri E., Barceló-Muñóz A., Pliego-Alfaro F., López-Herrera C., Cazorla F., Pliego C. Transcriptome analysis of the fungal pathogen Rosellinia necatrix during infection of a susceptible avocado rootstock identifies potential mechanisms of pathogenesis. BMC Genomics. 2019;20:1016. https://doi.org/10.1186/s12864-019-6387-5.