Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Potato spindle tuber viroid

https://doi.org/10.18699/VJ21.030

Abstract

Viroids belong to a very interesting class of molecules attracting researchers in phytopathology and molecular evolution. Here we review recent literature data concerning the genetics of Potato spindle tuber viroid (PSTVd) and the mechanisms related to its pathological effect on the host plants. PSTVd can be transmitted vertically through microspores and macrospores, but not with pollen from another infected plant. The 359 nucleotidelong genomic RNA of PSTVd is highly structured and its 3D-conformation is responsible for interaction with host cellular factors to mediate replication, transport between tissues during systemic infection and the severity of pathological symptoms. RNA replication is prone to errors and infected plants contain a population of mutated forms of the PSTVd genome. Interestingly, at 7 DAI, only 25 % of the newly synthesized RNAs were identical to the master copy, but this proportion increased to up to 70 % at 14 DAI and remained the same afterwards. PSTVd infection induces the immune response in host plants. There are PSTVd strains with a severe, a moderate or a mild pathological effect. Interestingly, viroid replication itself does not necessarily induce strong morphological or physiological symptoms. In the case of PSTVd, disease symptoms may occur due to RNA-interference, which decreases the expression levels of some important cellular regulatory factors, such as, for example, potato StTCP23 from the gibberellic acid pathway with a role in tuber morphogenesis or tomato FRIGIDA-like protein 3 with an early flowering phenotype. This association between the small segments of viroid genomic RNAs complementary to the untranslated regions of cellular mRNAs and disease symptoms provides a way for new resistant cultivars to be developed by genetic editing. To conclude, viroids provide a unique model to reveal the fundamental features of living systems, which appeared early in evolution and still remain undiscovered.

About the Authors

A. V. Kochetov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



A. Y. Pronozin
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



N. V. Shatskaya
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



D. A. Afonnikov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



O. S. Afanasenko
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; All-Russian Institute of Plant Protection
Russian Federation

Novosibirsk, 

Pushkin, St. Petersburg



References

1. Adkar-Purushothama C.R., Bolduc F., Bru P., Perreault J.-P. Insights into potato spindle tuber viroid quasi-species from infection to disease. Front. Microbiol. 2020;11:1235. DOI 10.3389/fmicb.2020.01235.

2. Adkar-Purushothama C.R., Perreault J.-P. Alterations of the viroid regions that interact with the host defense genes attenuate viroid infection in host plant. RNA Biol. 2018;15(7): 955-966. DOI 10.1080/15476286.2018.1462653.

3. Adkar-Purushothama C.R., Sano T., Perreault J.-P. Viroid-derived small RNA induces early flowering in tomato plants by RNA silencing. Mol. Plant Pathol. 2018;19(11):2446-2458. DOI 10.1111/mpp.12721.

4. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389-3402. DOI 10.1093/nar/25.17.3389.

5. Annenkov B.G. Problems and prospects of the influence of curative measures on the potato industry performance in the Russian Far East. In: Topical Issues of Crop Immunity, Sanitation, and Protection in the Russian Amur Region. Khabarovsk, 2000;26-42. (in Russian)

6. Bagherian S.A.A., Hamzehzarghani H., Izadpanah K., Djavaheri M. Effects of potato spindle tuber viroid infection on tomato metabolic prof ile. J. Plant Physiol. 2016;201:42-53. DOI 10.1016/j.jplph.2016.06.014. Epub 2016 Jun 30. PMID: 27393919.

7. BankevichA., Nurk S., Antipov D., GurevichA.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner P.A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19(5):455-477. DOI 10.1089/cmb.2012.0021.

8. Bao S., Owens R.A., Sun Q., Song H., Liu Y., Eamens A.L., Feng H., Tian H., Wang M.-B., Zhang R. Silencing of transcription factor encoding gene StTCP23 by small RNAs derived from the virulence modulating region of potato spindle tuber viroid is associated with symptom development in potato. PLoS Pathog. 2019;15(12):e1008110. DOI 10.1371/journal.ppat.1008110.

9. Barrero R.A., Napier K.R., Cunnington J., Liefting L., Keenan S., Frampton R.A., Szabo T., Bulman S., Hunter A., Ward L., Whattam M., Bellgard M.I. An internet-based bioinformatics toolkit for plant biosecurity diagnosis and surveillance of viruses and viroids. BMC Bioinform. 2017;18(1):26. DOI 10.1186/s12859-016-1428-4.

10. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15):2114-2120. DOI 10.1093/bioinformatics/btu170.

11. Brass J.R., Owens R.A., Matoušek J., Steger G. Viroid quasispecies revealed by deep sequencing. RNA Biol. 2017;14(3): 317-325. DOI 10.1080/15476286.2016.1272745.

12. Burger J.T., Maree H.J. Metagenomic next-generation sequencing of viruses infecting grapevines. Methods Mol. Biol. 2015; 1302:315-330. DOI 10.1007/978-1-4939-2620-6_23. PMID: 25981264.

13. Flores R., Navarro B., Delgado S., Serra P., Di Serio F. Viroid pathogenesis: a critical appraisal of the role of RNA silencing in triggering the initial molecular lesion. FEMS Microbiol. Rev. 2020;44(3):386-398. DOI 10.1093/femsre/fuaa011.

14. Friday D., Mukkara P., Owens R.A., Baumstark T., Bruist M.F. Processing of potato spindle tuber viroid RNAs in yeast, a nonconventional host. J. Virol. 2017;91(24):e01078-17. DOI 10.1128/JVI.01078-17.

15. Góra-Sochacka A., Więsyk A., Fogtman A., Lirski M., Zagórski-Ostoja W. Root transcriptomic analysis reveals global changes induced by systemic infection of Solanum lycopersicum with mild and severe variants of potato spindle tuber viroid. Viruses. 2019;11(11):992. DOI 10.3390/v11110992.

16. Huang X., Madan A. CAP3: a DNA sequence assembly program. Genome Res. 1999;9:868-877. DOI 10.1101/gr.9.9.868.

17. Kitabayashi S., Tsushima D., Adkar-Purushothama C.R., SanoT. Identification and molecular mechanisms of key nucleotides causing attenuation in pathogenicity of dahlia isolate of potato spindle tuber viroid. Int. J. Mol. Sci. 2020;21(19):7352. DOI 10.3390/ijms21197352.

18. Kochetov A.V., Kolchanov N.A., Sarai A. Interrelations between the efficiency of translation start sites and other sequence features of yeast mRNAs. Mol. Genet. Genom. 2004a; 270(5):442-447. DOI 10.1007/s00438-003-0941-0.

19. Kochetov A.V., Sarai A. Translational polymorphism as a potential source of plant proteins variety in Arabidopsis thaliana. Bioinformatics. 2004;20(4):445-447. DOI 10.1093/bioinformatics/btg443.

20. Kochetov A.V., Sirnik O.A., Rogozin I.B., Glazko G.V., Komarova M.L., Shumny V.K. Contextual features of higher plant mRNA 5′-untranslated regions. Mol. Biol. 2002;36(4):510- 516. DOI 10.1023/A:1019852427093.

21. Kochetov A.V., Titov S.E., Kolodiazhnaia Ya.S., Komarova M.L., Koval V.S., Makarova N.N., Ily’inskyi Yu.Yu., Trifonova E.A., Shumny V.K. Tobacco transformants bearing antisense suppressor of proline dehydrogenase gene, are characterized by higher proline content and cytoplasm osmotic pressure. Russ. J. Genet. 2004b;40(2):216-218. DOI 10.1023/B:RUGE.0000016999.53466.e1.

22. López-Carrasco A., Ballesteros C., Sentandreu V., Delgado S., Gago-Zachert S., Flores R., Sanjuán R. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-f idelity ultra-deep sequencing. PLoS Pathog. 2017;13(9):e1006547. DOI 10.1371/journal.ppat.1006547.

23. Matsushita Y., Yanagisawa H., Sano T. Vertical and horizontal transmission of Pospiviroids. Viruses. 2018;10(12):706. DOI 10.3390/v10120706.

24. Milanović J., Oklestkova J., Majdandžić A., Novák O., Mihaljević S. Organ-specif ic differences in endogenous phytohormone and antioxidative responses in potato upon PSTVd infection. J. Plant Physiol. 2019;232:107-114. DOI 10.1016/j.jplph.2018.10.027.

25. Nath V.S., Shrestha A., Awasthi P., Mishra A.K., Kocábek T., Matoušek J., Sečnik A., Jakše J., Radišek S., Hallan V. Mapping the gene expression spectrum of mediator subunits in response to viroid infection in plants. Int. J. Mol. Sci. 2020; 21(7):2498. DOI 10.3390/ijms21072498.

26. Otto C., Stadler P.F., Hoffmann S. Lacking alignments? The next-generation sequencing mapper segemehl revisited. Bioinformatics. 2014; 30(13):1837-1843. DOI 10.1093/bioinformatics/btu146.

27. Pecman A., Kutnjak D., Gutiérrez-Aguirre I., Adams I., Fox A., Boonham N., Ravnikar M. Next generation sequencing for detection and discovery of plant viruses and viroids: comparison of two approaches. Front. Microbiol. 2017;8:1998. DOI 10.3389/fmicb.2017.01998.

28. Roossinck M.J. Plant virus metagenomics: biodiversity and ecology. Annu. Rev. Genet. 2012;46:359-369. DOI 10.1146/annurev-genet-110711-155600.

29. Schmieder R., Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27(6):863-864. DOI 10.1093/bioinformatics/btr026.

30. Srivastava S., Prasad V. Viroids: small entities with a mean punch. In: Awasthi L.P. (Ed.) Applied Plant Virology: Advances, Detection, and Antiviral Strategies. Academic Press, 2020;209-226. DOI 10.1016/B978-0-12-818654-1.00016-5.

31. Suzuki T., Ikeda S., Kasai A., Taneda A., Fujibayashi M., Sugawara K., Okuta M., Maeda H., Sano T. RNAi-mediated down-regulation of Dicer-like 2 and 4 changes the response of ‘moneymaker’ tomato to potato spindle tuber viroid infection from tolerance to lethal systemic necrosis, accompanied by up-regulation of miR398, 398a-3p and production of excessive amount of reactive oxygen species. Viruses. 2019; 11(4):344. DOI 10.3390/v11040344.

32. Ventoso I., Kochetov A., Montaner D., Dopazo J., Santoyo J. Extensive translatome remodeling during ER stress response in mammalian cells. PLoS One. 2012;7(5):e35915.

33. Volkova O.A., Kochetov A.V. Interrelations between the nucleotide context of human start AUG codon, N-end amino acids of the encoded protein and initiation of translation. J. Biomol. Struct. Dyn. 2010;27(5):611-618. DOI 10.1080/07391102.2010.10508575.

34. Więsyk A., Candresse T., Zagórski-Ostoja W., Góra-Sochacka A. Viability and genetic stability of potato spindle tuber viroid mutants with indels in specific loops of the rod-like secondary structure. Virus Res. 2017;240:94-100. DOI 10.1016/j.virusres.2017.07.024.

35. Więsyk A., Lirski M., Fogtman A., Zagórski-Ostoja W., GóraSochacka A. Differences in gene expression profiles at the early stage of Solanum lycopersicum infection with mild and severe variants of potato spindle tuber viroid. Virus Res. 2020;286:198090. DOI 10.1016/j.virusres.2020.198090.

36. Wu J., Leontis N.B., Zirbel C.L., Bisaro D.M., Ding B. A threedimensional RNA motif mediates directional trafficking of Potato spindle tuber viroid from epidermal to palisade mesophyll cells in Nicotiana benthamiana. PLoS Pathog. 2019; 15(10):e1008147. DOI 10.1371/journal.ppat.1008147.

37. Wu J., Zhou C., Li J., Li C., Tao X., Leontis N.B., Zirbel C.L., Bisaro D.M., Ding B. Functional analysis reveals G/U pairs critical for replication and trafficking of an infectious noncoding viroid RNA. Nucleic Acids Res. 2020;48(6):3134- 3155. DOI 10.1093/nar/gkaa100.

38. Wu Q., Ding S.W., Zhang Y., Zhu S. Identification of viruses and viroids by next-generation sequencing and homologydependent and homology-independent algorithms. Annu. Rev. Phytopathol. 2015;53:425-444. DOI 10.1146/annurevphyto-080614-120030.

39. Yanagisawa H., Matsushita Y. Differences in dynamics of horizontal transmission of Tomato planta macho viroid and Potato spindle tuber viroid after pollination with viroidinfected pollen. Virology. 2018;516:258-264. DOI 10.1016/j.virol.2018.01.023.

40. Yanagisawa H., Sano T., Hase S., Matsushita Y. Influence of the terminal left domain on horizontal and vertical transmissions of tomato planta macho viroid and potato spindle tuber viroid through pollen. Virology. 2019;526:22-31. DOI 10.1016/j.virol.2018.09.021.

41. Zheng Y., Wang Y., Ding B., Fei Z. Comprehensive transcriptome analyses reveal that potato spindle tuber viroid triggers genome-wide changes in alternative splicing, inducible transacting activity of phased secondary small interfering RNAs, and immune responses. J. Virol. 2017;91(11):e00247-17. DOI 10.1128/JVI.00247-17.


Review

Views: 1403


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)