PLASTID TRNL INTRON VARIABILITY IN FABOIDEAE SPECIES (FABACEAE)
Abstract
The intron located between the first and second nucleotide of the leucine tRNA anticodon is the only representative of group I introns in higher plants. In this paper, for the first time the intron sequence of the plastid trnL gene is described in 16 legume species, and putative secondary structures of the entire intron and some of its functional domains are reconstructed. It has been found that genera of the Fabaceae family, as well as species within a single genus, are highly diverse in this sequence. Single nucleotide polymorphisms have been found in sequences of the catalytic center, believed to be highly conserved.
About the Authors
E. A. D’yachenkoRussian Federation
M. A. Filyushin
Russian Federation
E. P. Pronin
Russian Federation
E. Z. Kochieva
Russian Federation
References
1. Слугина М.А., Снигирь Е.А., Рыжова Н.Н., Кочиева Е.З. Структура и полиморфизм фрагмента локуса Pain-1, кодирующего вакуолярную инвертазу Solanum // Молекуляр. биология. 2013. T. 47. C. 243–250.
2. Borsch T., Hilu KW., Quandt D., Wilde V., Neinhuis C., Barthlott W. Noncoding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms // J. Evol. Biol. 2003. V. 16. P. 558–576.
3. Gielly L., Yuan Y.-M., Kupfer P., Taberlet P. Phylogenetic use of noncoding regions in the genus Gentiana L.: chloroplast trnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences // Mol. Phylogenet. Evol. 1996. V. 5. No. 3. P. 460–466.
4. Kupicha F.K. The infrageneric structure of Vicia // Notes from the Royal Botanic Garden. Edinburg. 1976. V. 34. No. 3. P. 287–326.
5. Nielsen H., Johansen S.D. Group I introns // RNA Biology. 2009. V. 6. No. 4. P. 375–383
6. Oskoueiyan R., Osaloo S.K., Maassoumi A.A., Nejadsattari T., Mozaffarian V. Phylogenetic status of Vavilovia formosa (Fabaceae-Fabeae) based on nrDNA ITS and cpDNA sequences // Biochem. Syst. Ecol. 2010. V. 38. P. 313–319.
7. Paquin B., Kathe S.D., Nierzwicki-Bauer S.A., Shub D.A. Origin and evolution of group – I introns in cyanobacterial tRNA genes // J. Bacteriol. 1997. V. 179. P. 6798–6806.
8. Schaefer H., Hechenleitner P., Santos-Guerra A., Menezes de Sequeira M., Pennington R., Kenicer G., Carine M.A. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages // BMC Evol. Biol. 2012. V. 12. P. 250.
9. Summons R.E., Jahnke L.L., Logan G.A., Hope J.M. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis // Nature. 1999. V. 398. P. 554–557.
10. Taberlet P., Coissac E., Pompanon F., Gielly L., Miquel C., Valentini A., Vermat T., Corthier G., Brochmann C., Willerslev E. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding // Nucl. Acids Res. 2007. V. 35. No. 3. e14.
11. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods // Mol. Biol. Evol. 2011. V. 28. P. 2731–2739.
12. Weeden N.F. Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘domestication syndrome’ for legumes // Ann. Bot. 2007. V. 100. P. 1017–1025.
13. Won H., Renner S.S. The chloroplast trnT–trnF region in the seed plant lineage Gnetales // J. Mol. Evol. 2005. V. 61. P. 425–436.
14. Yulita K.S. Secondary structures of chloroplast trnL intron in dipterocarpaceae and its implication for the phylogenetic reconstruction // Hayati J. Biosci. 2013. V. 20. No. 1. P. 31–39.
15. Zhou Y., Lu C., Wu Q.-J., Wang Y., Sun Z.-T., Deng J.-C., Zhang Y. GISSD: Group I intron sequence and structure database // Nucl. Acids Res. 2008. V. 36. D31–D37.
16. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction // Nucl. Acids Res. 2003. V. 31. P. 3406–3415.