Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Технологии поиска и исследования потенциально осциллирующих ферментативных систем

https://doi.org/10.18699/VJ21.035

Аннотация

Многие процессы в живых организмах подвержены периодическим колебаниям на различных иерархических уровнях их организации: от молекулярного-генетического до популяционного и экологического. Осциллирующие процессы отвечают за клеточные циклы как у прокариот, так и у эукариот, за циркадные ритмы, синхронную связь дыхания с сердечными сокращениями и др. Колебания численностей организмов в природных популяциях могут быть обусловлены собственными свойствами популяций, их возрастной структурой, а также экологическими взаимоотношениями с другими видами. Наряду с экспериментальными подходами, для исследования осциллирующих биологических систем широко применяется математическое и компьютерное моделирование. В данной статье представлены классические математические модели, которые описывают осциллирующее поведение в биологических системах. Приведены методы поиска осциллирующих молекулярно-генетических систем на примере их частного случая – осциллирующих ферментативных систем. Рассмотрены факторы, влияющие на циклическую динамику в живых системах, характерные не только для молекулярно-генетического уровня, но и для более высоких уровней организации. Обсуждается применение различных способов описания генных сетей для моделирования осциллирующих молекулярно-генетических систем, где важнейшим фактором возникновения циклического поведения является наличие обратных связей. Представлены технологии поиска потенциально осциллирующих ферментативных систем. С помощью метода, описанного в статье, проводится поэтапный процесс построения и анализа сначала структурных моделей (графов) генных сетей, а затем реконструкции математических моделей и вычислительных экспериментов с ними. Структурные модели идеально подходят для задач автоматического поиска потенциальных осциллирующих контуров (связных подграфов), структура которых может соответствовать математической модели молекулярно-генетической системы, демонстрирующей осциллирующее поведение в динамике. При этом именно численное исследование математических моделей для отобранных контуров позволяет подтвердить наличие в них устойчивых предельных циклов. В качестве примера применения технологии проанализирована сеть из 300 метаболических реакций бактерии Escherichia coli с использованием инструментов математического и компьютерного моделирования. В частности, показано осциллирующее поведение для контура, реакции которого входят в путь биосинтеза триптофана.

Об авторах

Т. Н. Лахова
Курчатовский геномный центр ИЦиГ СО РАН
Россия

Новосибирск



Ф. В. Казанцев
Курчатовский геномный центр ИЦиГ СО РАН
Россия

Новосибирск



С. А. Лашин
Курчатовский геномный центр ИЦиГ СО РАН; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



Ю. Г. Матушкин
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



Список литературы

1. Akinshin A.A., Golubyatnikov V.P. Cycles in symmetric dynamical systems. Vestnik NGU = Herald of the Novosibirsk State University. 2012;12(2):3-12. (in Russian)

2. Allen G.J., Chu S.P., Schumacher K., Shimazaki C.T., Vafeados D., Kemper A., Hawke S.D., Tallman G., Tsien R.Y., Harper J.F., Chory J., Schroeder J.I. Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science. 2000;289:2338-2342. DOI 10.1126/science.289.5488.2338.

3. Ananko E.A. GeneNet: a database on structure and functional organisation of gene networks. Nucleic Acids Res. 2002;30:398-401. DOI 10.1093/nar/30.1.398.

4. Ashkenazy Y., Ivanov P.C., Havlin S., Peng C.K., Goldberger A.L., Stanley H.E. Magnitude and sign correlations in heartbeat fluctuations. Phys. Rev. Lett. 2001;86:1900-1903. DOI 10.1103/PhysRevLett.86.1900.

5. Bashkirtseva I., Ryashko L. Stochastic sensitivity and variability of glycolytic oscillations in the randomly forced Sel’kov model. Eur. Phys. J. B. 2017;90:17. DOI 10.1140/epjb/e2016-70674-4.

6. Bazykin A.D. Nonlinear Dynamics of Interacting Populations. Moscow–Izhevsk, 2003. (in Russian)

7. Becks L., Arndt H. Different types of synchrony in chaotic and cyclic communities. Nat. Commun. 2013;4:1359. DOI 10.1038/ncomms2355.

8. Bier M., Bakker B.M., Westerhoff H.V. How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment. Biophys. J. 2000;78:1087-1093. DOI 10.1016/S0006-3495(00)76667-7.

9. Boccalandro H.E., González C.V., Wunderlin D.A., Silva M.F. Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/ night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J. Pineal Res. 2011;51:226-232. DOI 10.1111/j.1600-079X.2011.00884.x.

10. Boiteux A., Goldbeter A., Hess B. Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: a model and experimental study. Proc. Natl. Acad. Sci. USA. 1975;72:3829- 3833. DOI 10.1073/pnas.72.10.3829.

11. Cardon S.Z., Iberall A.S. Oscillations in biological systems. Biosystems. 1970;3:237-249. DOI 10.1016/0303-2647(70)90004-3.

12. Caspi R., Billington R., Ferrer L., Foerster H., Fulcher C.A., Keseler I.M., Kothari A., Krummenacker M., Latendresse M., Mueller L.A., Ong Q., Paley S., Subhraveti P., Weaver D.S., Karp P.D. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016;44:D471-D480. DOI 10.1093/nar/gkv1164.

13. Chen W.W., Niepel M., Sorger P.K. Classic and contemporary approaches to modeling biochemical reactions. Genes Dev. 2010;24: 1861-1875. DOI 10.1101/gad.1945410.

14. Chetverikov S.S. The waves of life. Russkii Ornitologicheskii Zhurnal = Тhe Russian Journal of Ornithology. 2009;18:1822-1829. (in Russian)

15. Cooper S. Bacterial Growth and Division. Acad. Press, Inc., 1991.

16. Cowan A.E., Moraru I.I., Schaff J.C., Slepchenko B.M., Loew L.M. Spatial modeling of cell signaling networks. In: Asthagiri A.R., Arkin A.P. (Eds.). Methods in Cell Biology. Acad. Press, 2012;195- 221. DOI 10.1016/B978-0-12-388403-9.00008-4.

17. Demidenko G.V., Kolchanov N.A., Likhoshvai V.A., Matushkin Yu.G., Fadeev S.I. Mathematical modeling of gene networks regulation contours. Zhurnal Vychislitel’noy Matematiki i Matematicheskoy Fiziki = Computational Mathematics and Mathematical Physics. 2004;44:2276-2295. (in Russian)

18. Dupont G., Berridge M.J., Goldbeter A. Signal-induced Ca2+ oscillations: properties of a model based on Ca2+-induced Ca2+ release. Cell Calcium. 1991;12:73-85. DOI 10.1016/0143-4160(91)90010-C.

19. Dupont G., Goldbeter A. Theoretical insights into the origin of signalinduced calcium oscillations. In: Cell to Cell Signalling. Elsevier, 1989;461-474. DOI 10.1016/B978-0-12-287960-9.50040-X

20. Dupont G., Goldbeter A. One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release. Cell Calcium. 1993;14:311-322. DOI 10.1016/0143-4160(93)90052-8.

21. Elowitz M.B., Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000;403:335-338. DOI 10.1038/35002125.

22. Erdakov L.N., Moroldoev I.V. Variability of long-term cyclicity in the population dynamics of the northern red-backed vole (Myodes Rutilus (Pallas, 1779)). Principles Ecol. 2017;25:26-36. DOI 10.15393/j1.art.2017.7342.

23. Fadeev S.I., Likhoshvai V.A. On hypothetical gene networks. Sibirskii Zhurnal Industrial’noi Matematiki = Journal of Applied and Industrial Mathematics. 2003;6(3):134-153. (in Russian)

24. Field R., Burger M. (Eds.) Oscillations and Traveling Waves in Chemical Systems. Chichester: John Wiley Publ., 1985. (Russ. ed.: Fild R., Burger M. Kolebaniya i begushchie volny v khimicheskikh sistemakh. Moscow: Mir Publ., 1988. (in Russian))

25. Funahashi A., Morohashi M., Kitano H., Tanimura N. CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico. 2003;1:159-162. DOI 10.1016/S1478-5382(03)02370-9.

26. Gaidov Yu.A., Golubyatnikov V.P. On some nonlinear dynamical systems modelling asymmetric gene networks. Vestnik NGU = Herald of the Novosibirsk State University. 2007;7(2):19-27. (in Russian)

27. Garde A.H., Hansen A.M., Skovgaard L.T., Christensen J.M. Seasonal and biological variation of blood concentrations of total cholesterol, dehydroepiandrosterone sulfate, hemoglobin A1c, IgA, prolactin, and free testosterone in healthy women. Clin. Chem. 2000;46(4): 551-559. DOI 10.1093/clinchem/46.4.551.

28. Goldbeter A. Computational approaches to cellular rhythms. Nature. 2002;420:238-245. DOI 10.1038/nature01259.

29. Goldbeter A. Oscillatory enzyme reactions and Michaelis–Menten kinetics. FEBS Lett. 2013;587:2778-2784. DOI 10.1016/j.febslet.2013.07.031.

30. Goldbeter A., Dupont G., Berridge M.J. Minimal model for signalinduced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. Sci. USA. 1990;87:1461- 1465. DOI 10.1073/pnas.87.4.1461.

31. Goldbeter A., Lefever R. Dissipative structures for an allosteric model. Biophys. J. 1972;12:1302-1315. DOI 10.1016/S0006-3495(72)86164-2.

32. Golubyatnikov V.P., Golubyatnikov I.V., Likhoshvai V.A. On the existence and stability of cycles in five-dimensional models of gene networks. Numer. Anal. Appl. 2010;3:329-335. DOI 10.1134/S199542391004004X.

33. Golubyatnikov V.P., Kazantsev M.V. On a piecewise linear dynamical system that models a gene network with variable feedback. Sibirskiy Zhurnal Chistoy i Prikladnoy Matematiki = Siberian Journal of Pure and Applied Mathematics. 2016;16(4):28-37. DOI 10.17377/PAM.2016.16.404. (in Russian)

34. Golubyatnikov V.P., Kirillova N.E. On cycles in models of functioning of circular gene networks. Sibirskiy Zhurnal Chistoy i Prikladnoy Matematiki = Siberian Journal of Pure and Applied Mathematics. 2018;18(1):54-63. DOI 10.17377/PAM.2018.18.5. (in Russian)

35. Goodwin B.C. Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 1965;3:425-437. DOI 10.1016/0065-2571(65)90067-1.

36. Hardin P.E., Hall J.C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990;343:536-540. DOI 10.1038/343536a0.

37. Hecker M., Lambeck S., Toepfer S., van Someren E., Guthke R. Gene regulatory network inference: data integration in dynamic models – a review. Biosystems. 2009;96:86-103. DOI 10.1016/j.biosystems.2008.12.004.

38. Higgins J. A chemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc. Natl. Acad. Sci. USA. 1964;51:989-994. DOI 10.1073/pnas.51.6.989.

39. Higgins J. The theory of oscillating reactions – kinetics symposium. Ind. Eng. Chem. 1967;59:18-62. DOI 10.1021/ie50689a006.

40. Holtum J.A.M., Winter K. Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2. Planta. 2003;218:152-158. DOI 10.1007/s00425-003-1089-1.

41. Hoops S., Sahle S., Gauges R., Lee C., Pahle J., Simus N., Singhal M., Xu L., Mendes P., Kummer U. COPASI – a COmplex PAthway SImulator. Bioinformatics. 2006;22:3067-3074. DOI 10.1093/bioinformatics/btl485.

42. Hucka M., Finney A., Sauro H.M., Bolouri H., Doyle J.C., Kitano H., and the rest of the SBML Forum: Arkin A.P., Bornstein B.J., Bray D., Cornish-Bowden A., Cuellar A.A., Dronov S., Gilles E.D., Ginkel M., Gor V., Goryanin I.I., Hedley W.J., Hodgman T.C., Hofmeyr J.-H., Hunter P.J., Juty N.S., Kasberger J.L., Kremling A., Kummer U., Le Novere N., Loew L.M., Lucio D., Mendes P., Minch E., Mjolsness E.D., Nakayama Y., Nelson M.R., Nielsen P.F., Sakurada T., Schaff J.C., Shapiro B.E., Shimizu T.S., Spence H.D., Stelling J., Takahashi K., Tomita M., Wagner J., Wang J. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics. 2003;19:524-531. DOI 10.1093/bioinformatics/btg015.

43. Johnson K.A. A century of enzyme kinetic analysis, 1913 to 2013. FEBS Lett. 2013;587:2753-2766. DOI 10.1016/j.febslet.2013.07.012.

44. Kanehisa M., Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27-30. DOI 10.1093/nar/28.1.27.

45. Kazantsev F.V., Akberdin I.R., Lashin S.A., Ree N.A., Timonov V.S., Ratushnyi A.V., Khlebodarova T.M., Likhoshvai V.A. MAMMOTh: a new database for curated mathematical models of biomolecular systems. J. Bioinf. Comput. Biol. 2018;16:1740010. DOI 10.1142/S0219720017400108.

46. Keseler I.M., Mackie A., Santos-Zavaleta A., Billington R., BonavidesMartínez C., Caspi R., Fulcher C., Gama-Castro S., Kothari A., Krummenacker M., Latendresse M., Muñiz-Rascado L., Ong Q., Paley S., Peralta-Gil M., Subhraveti P., Velázquez-Ramírez D.A., Weaver D., Collado-Vides J., Paulsen I., Karp P.D. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res. 2017;45:D543-D550. DOI 10.1093/nar/gkw1003.

47. Kolchanov N.A., Goncharov S.S., Likhoshvai V.A., Ivanisenko V.A. Computional Systems Biology. Novosibirsk: Publ. House SB RAS, 2008. (in Russian)

48. Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Likhoshvai V.A., Matushkin Yu.G. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2): 833-850. (in Russian)

49. Kolchanov N.A., Matushkin Yu.G., Frolov A.S. Computer analysis of the evolution of genetic regulatory systems. In: Shumny V.K., Markel A.L. (Eds.). Current Concepts of Evolutionary Genetics. Novosibirsk: Institute of Cytology and Genetics SB RAS, 2000; 60-75. (in Russian)

50. Kraus M., Wolf Björn, Wolf Bernhard. Crosstalk between cellular morphology and calcium oscillation patterns. Insights from a stochastic computer model. Cell Calcium. 1996;19:461-472. DOI 10.1016/S0143-4160(96)90055-X.

51. Kuznetsov A.P., Seliverstova E.S., Trubetskov D.I., Turukina L.V. Phenomenon of the van der Pol equation. Izvestiya Vysshikh Uchebnykh Zavedeniy. Prikladnaya Nelineynaya Dinamika = Izvestiya VUZ. Applied Nonlinear Dynamics. 2014;22(4):3-42. DOI 10.18500/0869-6632-2014-22-4-3-42. (in Russian)

52. Lahav G., Rosenfeld N., Sigal A., Geva-Zatorsky N., Levine A.J., Elowitz M.B., Alon U. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Genet. 2004;36:147-150. DOI 10.1038/ng1293.

53. Lavrentovich M., Hemkin S. A mathematical model of spontaneous calcium(II) oscillations in astrocytes. J. Theor. Biol. 2008;251:553- 560. DOI 10.1016/j.jtbi.2007.12.011.

54. Le Novere N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 2006;34:D689-D691. DOI 10.1093/nar/gkj092.

55. Le Novère N., Hucka M., Mi H., Moodie S., Schreiber F., Sorokin A., Demir E., Wegner K., Aladjem M.I., Wimalaratne S.M., Bergman F.T., Gauges R., Ghazal P., Kawaji H., Li L., Matsuoka Y., Villéger A., Boyd S.E., Calzone L., Courtot M., Dogrusoz U., Freeman T.C., Funahashi A., Ghosh S., Jouraku A., Kim S., Kolpakov F., Luna A., Sahle S., Schmidt E., Watterson S., Wu G., Goryanin I., Kell D.B., Sander C., Sauro H., Snoep J.L., Kohn K., Kitano H. The Systems Biology Graphical Notation. Nat. Biotechnol. 2009;27: 735-741. DOI 10.1038/nbt.1558.

56. Likhoshvai V.A., Fadeev S.I., Matushkin Y.G. The global operation modes of gene networks determined by the structure of negative feedbacks. In: Bioinformatics of Genome Regulation and Structure. Boston, MA: Springer US, 2004;319-329. DOI 10.1007/978-1-4419-7152-4_34.

57. Likhoshvai V.A., Golubyatnikov V.P., Khlebodarova T.M. Limit cycles in models of circular gene networks regulated by negative feedback loops. BMC Bioinform. 2020;21:255. DOI 10.1186/s12859-020-03598-z.

58. Likhoshvai V.A., Matushkin Yu.G., Fadeev S.I. On the relationship of the gene network graph with the qualitative modes of its functioning. Molekulyarnaya Biologiya = Molecular Biology. 2001;35(6):1080- 1087. (in Russian)

59. Likhoshvai V.A., Matushkin Yu.G., Fadeev S.I. Problems in the theory of the functioning of genetic networks. Sibirskii Zhurnal Industrial’noi Matematiki = Journal of Applied and Industrial Mathematics. 2003;6(2):64-80. (in Russian)

60. Lotka A.J. Contribution to the theory of periodic reactions. J. Phys. Chem. 1910;14:271-274. DOI 10.1021/j150111a004.

61. Lotka A.J. Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 1920;42:1595-1599. DOI 10.1021/ja01453a010.

62. Malik-Sheriff R.S., Glont M., Nguyen T.V.N., Tiwari K., Roberts M.G., Xavier A., Vu M.T., Men J., Maire M., Kananathan S., Fairbanks E.L., Meyer J.P., Arankalle C., Varusai T.M., Knight-Schrijver V., Li L., Dueñas-Roca C., Dass G., Keating S.M., Park Y.M., Buso N., Rodriguez N., Hucka M., Hermjakob H. BioModels – 15 years of sharing computational models in life science. Nucleic Acids Res. 2019;48:407-415. DOI 10.1093/nar/gkz1055.

63. Meyer T. Calcium spiking. Annu. Rev. Biophys. Biomol. Struct. 1991; 20:153-174. DOI 10.1146/annurev.biophys.20.1.153.

64. Meyer T., Stryer L. Molecular model for receptor-stimulated calcium spiking. Proc. Natl. Acad. Sci. USA. 1988;85:5051-5055. DOI 10.1073/pnas.85.14.5051.

65. Michaelis L., Menten M.L. Die Kinetik der Invertinwirkung. Biochem. Z. 1913;49:333-369.

66. Mushtakova S.P. Oscillatory reactions in chemistry. Sorosovskij Obrazovatelnyj Zhurnal = Soros Educational Journal. 1997;7:31-36. (in Russian)

67. Novák B., Tyson J.J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 2008;9:981-991. DOI 10.1038/nrm2530.

68. Ocone A., Millar A.J., Sanguinetti G. Hybrid regulatory models: a statistically tractable approach to model regulatory network dynamics. Bioinformatics. 2013;29:910-916. DOI 10.1093/bioinformatics/btt069.

69. Pasti L., Volterra A., Pozzan T., Carmignoto G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 1997;17:7817-7830. DOI 10.1523/jneurosci.17-20-07817.1997.

70. Pertsev N.V., Loginiv K.K. Stochastic model of dynamics of a biological community under conditions of consumption of harmful food resources by individuals. Matematicheskaya Biologiya i Bioinformatika = Mathematical Biology and Bioinformatics. 2011;6(1):1-13. (in Russian)

71. Podkolodnaya O.A., Tverdokhleb N.N., Podkolodnyy N.L. Computational modeling of the cell-autonomous mammalian circadian oscillator. BMC Syst. Biol. 2017;11:27-42. DOI 10.1186/s12918-016-0379-8.

72. Podkolodnyy N.L., Tverdokhleb N.N., Podkolodnaya O.A. Analysis of the circadian rhythm of biological processes in mouse liver and kidney. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(8):903-910. DOI 10.18699/VJ17.311 (in Russian)

73. Price J.L., Blau J., Rothenfluh A., Abodeely M., Kloss B., Young M.W. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell. 1998;94:83-95. DOI 10.1016/S0092-8674(00)81224-6.

74. Prives C. Signaling to p53. Cell. 1998;95:5-8. DOI 10.1016/S0092-8674(00)81774-2.

75. Riznichenko G.Yu. Lectures on Mathematical Models in Biology. Moscow–Izhevsk, 2002. (in Russian)

76. Riznichenko G.Yu. Mathematical Modeling of Biological Processes. Models in Biophysics and Ecology. Moscow: Urait Publ., 2017. (in Russian)

77. Romanovsky Yu.M., Stepanova N.V., Chernavsky D.S. Mathematical Modeling in Biophysics. Moscow: Nauka Publ., 1975. (in Russian)

78. Rompala K., Rand R., Howland H. Dynamics of three coupled van der Pol oscillators with application to circadian rhythms. Commun. Nonlinear Sci. Numer. Simul. 2007;12:794-803. DOI 10.1016/j.cnsns.2005.08.002.

79. Ryashko L. Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis. Chaos. 2018;28. DOI 10.1063/1.4989982.

80. Schaff J., Fink C.C., Slepchenko B., Carson J.H., Loew L.M. A general computational framework for modeling cellular structure and function. Biophys. J. 1997;73:1135-1146. DOI 10.1016/S0006-3495(97)78146-3.

81. Sel’kov E.E. Self-oscillations in glycolysis. 1. A simple kinetic model. Eur. J. Biochem. 1968;4:79-86. DOI 10.1111/j.1432-1033.1968.tb00175.x.

82. Shnol S.E. Kosmofysiska Faktorer i Slumpmassiga Processer. Stockholm (Sweden): Svenska fysikarkivet (the Swedish physics archive), 2009. (in Russian)

83. Shnol E.E. (Ed.). Studies in Mathematical Biology: Collection of scientific papers in memoriam A.D. Bazykin. Pushchino Scientific Center RAS, 1996. (in Russian)

84. Siwicki K.K., Eastman C., Petersen G., Rosbash M., Hall J.C. Antibodies to the period gene product of drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron. 1988;1:141-150. DOI 10.1016/0896-6273(88)90198-5.

85. Smolen P., Baxter D.A., Byrne J.H. Mathematical modeling of gene networks. Neuron. 2000;26:567-580. DOI 10.1016/S0896-6273(00)81194-0.

86. Struyf E., Smis A., Van Damme S., Meire P., Conley D.J. The global biogeochemical silicon cycle. Silicon. 2009;1:207-213. DOI 10.1007/s12633-010-9035-x.

87. Tyson J.J., Chen K.C., Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 2003;15:221-231. DOI 10.1016/S0955-0674(03)00017-6.

88. Tyson J.J., Laomettachit T., Kraikivski P. Modeling the dynamic behavior of biochemical regulatory networks. J. Theor. Biol. 2019; 462:514-527. DOI 10.1016/j.jtbi.2018.11.034.

89. Tyson J.J., Novák B. Functional motifs in biochemical reaction networks. Annu. Rev. Phys. Chem. 2010;61:219-240. DOI 10.1146/annurev.physchem.012809.103457.

90. Van Cappellen P. Biomineralization and global biogeochemical cycles. Rev. Mineral. Geochem. 2003;54:357-381. DOI 10.2113/0540357.

91. van der Pol B., van der Mark J. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Lond. Edinb. Dubl. Phil. Mag. J. Sci. 1928;6:763-775. DOI 10.1080/14786441108564652.

92. Volterra V. Математическая теория борьбы за существование (пер. П.П. Лазарева). Uspekhi Fizicheskih Nauk. 1928;8:13-34. DOI 10.3367/UFNr.0008.192801b.0013.

93. Walter C. Oscillations in controlled biochemical systems. Biophys. J. 1969;9:863-872. DOI 10.1016/S0006-3495(69)86423-4.

94. Walter C.F. The occurrence and the significance of limit cycle behavior in controlled biochemical systems. J. Theor. Biol. 1970;27:259-272. DOI 10.1016/0022-5193(70)90141-4.

95. Wong A.S.Y., Huck W.T.S. Grip on complexity in chemical reaction networks. Beilstein J. Organic Chem. 2017;13:1486-1497. DOI 10.3762/bjoc.13.147.

96. Yasuma F., Hayano J.I. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125: 683-690. DOI 10.1378/chest.125.2.683.

97. Young M.W., Bargiello T.A., Jackson F.R. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature. 1984; 312:752-754.

98. Zavarzin G.A. Establishment of a system of biogeochemical cycles. Paleontologicheskii Zhurnal = Paleontological Journal. 2003;6:16-24. (in Russian)

99. Zavarzin G.A. Evolution of the Prokaryotic Biosphere: “Microbes in the cycle of life”. 120 years afterwards: S.N. Winogradsky memorial lectures. Moscow: MAKS Press Publ., 2011. (in Russian)

100. Zhabotinsky A.M. Concentration Auto-oscillations. Moscow: Nauka Publ., 1974. (in Russian)


Рецензия

Просмотров: 908


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)