Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Разработка панели маркеров для генотипирования отечественных сортов сои по генам, контролирующим срок вегетации и реакцию на фотопериод

https://doi.org/10.18699/VJ21.087

Аннотация

Cоя (Glycine max L.) – одна из важнейших сельскохозяйственных культур, выращиваемая в большом диапазоне географической широты. В связи с этим в селекции сои необходимо обращать внимание на набор генов, контролирующих переход к фазе цветения, что позволит максимально точно адаптировать генотипы к локальным условиям произрастания. В настоящее время возможности селекции сои по данному признаку значительно расширились благодаря идентификации в ее геноме основных генов (E1–Е4, GmFT2a, GmFT5a), контролирующих процессы цветения и созревания в зависимости от длины дня. Целью нашей работы являлось создание панели маркеров к этим генам, которая может быть использована для быстрого и эффективного генотипирования отечественных сортов сои и отбора растительного материала по признакам чувствительности к длине дня и продолжительности вегетационного периода. Проведено тестирование 10 комбинаций праймеров (как ранее разработанных, так и собственных) для выявления различных аллельных состояний генов E1–Е4, GmFT2a и GmFT5a на выборке из 10 сортов сои из различных групп спелости. В итоге выявлено пять комбинаций доминантных и рецессивных аллелей по генам E1–E4: 1) е1-nl(e1-as)/e2-ns/е3-tr(e3-fs)/е4; 2) e1-as/e2-ns/е3-tr/Е4; 3) e1-as/e2-ns/Е3-На/е4; 4) E1/e2-ns/е3-tr/Е4; 5) е1-nl/e2-ns/Е3-На/Е4. Проанализированные сорта содержали наиболее распространенные аллели генов GmFT2a и GmFT5a, за исключением сорта Кассиди, у которого был обнаружен редкий доминантный аллель GmFT5a-H4. Степень скороспелости сортов положительно коррелировала с количеством рецессивных генов E1–Е4, что согласуется с данными зарубежных авторов, полученными на выборках сортов из Японии и Северного Китая. Таким образом, разработанная панель маркеров может успешно использоваться в селекции сои на скороспелость и чувствительность к фотопериоду.

 

Об авторах

Р. Н. Перфильев
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



А. Б. Щербань
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Е. А. Салина
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Список литературы

1. Agarkova S.N., Novikova N.E., Belyaeva R.V., Golovina E.V., Belyaeva Zh.A., Tsukanova Z.R., Mitkina N.I. Features of the formation of productivity and adaptive reactions in leguminous crop varieties with recessive alleles of genes. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 2016;177(2):22-39. DOI 10.30901/2227-8834-2016-222-39. (in Russian)

2. Gorissen S.H.M., Crombag J.J.R., Senden J.M.G., Waterval W.A.H., Bierau J., Verdijk L.B., Loon L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids. 2018;50(12):1685-1695. DOI 10.1007/s00726-0182640-5.

3. Guo G., Xu K., Zhang X., Zhu J., Lu M., Chen F., Liu L., Xi Z.Y., Bachmair A., Chen Q., Fu Y.F. Extensive analysis of GmFTL and GmCOL expression in northern soybean cultivars in field conditions. PLoS One. 2015;10(9):e0136601. DOI 10.1371/journal.pone.0136601.

4. Hoffman J.R., Falvo M.J. Protein – which is best? J. Sports Sci. Med. 2004;3(3):118-130.

5. Jia H., Jiang B., Wu C., Lu W., Hou W., Sun S., Yan H., Han T. Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions. PLoS One. 2014;9(4):e94139. DOI 10.1371/journal.pone.0094139.

6. Jiang B., Nan H., Gao Y., Tang L., Yue Y., Lu S., Ma L., Cao D., Sun S., Wang J., Wu C., Yuan X., Hou W., Kong F., Han T., Liu B. Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS One. 2014;9(8):e106042. DOI 10.1371/journal.pone.0106042.

7. Jiang B., Yue Y., Gao Y., Ma L., Sun S., Wu C., Hou W., Lam H.M., Han T. GmFT2a polymorphism and maturity diversity in soybeans. PLoS One. 2013;8(10):e77474. DOI 10.1371/journal.pone.0077474.

8. Jiang B., Zhang S., Song W., Khan M., Sun S., Zhang C., Wu T., Wu C., Han T. Natural variations of FT family genes in soybean varieties covering a wide range of maturity groups. BMC Genom. 2019; 20(1):230. DOI 10.1186/s12864-019-5577-5.

9. Kiseleva A.A., Shcherban A.B., Leonova I.N., Frenkel Z., Salina E.A. Identification of new heading date determinants in wheat 5B chromosome. BMC Plant Biol. 2016;16(8):35-46. DOI 10.1186/s12870015-0688-х.

10. Kong F., Liu B., Xia Z., Sato S., Kim B.M., Watanabe S., Yamada T., Tabata S., Kanazawa A., Harada K., Abe J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol. 2010; 154(3):1220-1231. DOI 10.1104/pp.110.160796.

11. Korsakov N.I. Soybean Genetic Collection Catalog. Leningrad, 1973. (in Russian)

12. Liu B., Kanazawa A., Matsumura H., Takahashi R., Harada K., Abe J. Genetic redundancy in soybean photoresponses associated with duplication of phytochrome A gene. Genetics. 2008;180(2):995-1007. DOI 10.1534/genetics.108.092742.

13. Saindon G., Voldeng H.D., Beversdorf W.D., Buzzell R.I. Genetic control of long daylength response in soybean. Crop Sci. 1989; 29(6):1436-1439. DOI 10.2135/cropsci1989.0011183X002900060021x.

14. Samanfar B., Molnar S.J., Charette M., Schoenrock A., Dehne F., Golshani A., Belzile F., Cober E.R. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor. Appl. Genet. 2017;130(2):377-390. DOI 10.1007/s00122016-2819-7.

15. Takeshima R., Hayashi T., Zhu J., Zhao C., Xu M., Yamaguchi N., Sayama T., Ishimoto M., Kong L., Shi X., Liu B., Tian Z., Yamada T., Kong F., Abe J. A soybean quantitative trait locus that promotes flowering under long days is identified as FT5a, a FLOWERING LOCUS T ortholog. J. Exp. Bot. 2016;67(17):5247-5258. DOI 10.1093/jxb/erw283.

16. Tsubokura Y., Watanabe S., Xia Z., Kanamori H., Yamagata H., Kaga A., Katayose Y., Abe J., Ishimoto M., Harada K. Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann. Bot. 2014;13(3):429-441. DOI 10.1093/aob/mct269.

17. Vavilov N.I. Centers of origin of cultivated plants. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 1926;16(2):248. (in Russian)

18. Wang F., Nan H., Chen L., Fang C., Zhang H., Su T., Li S., Cheng Q., Dong L., Liu B., Kong F., Lu S. A new dominant locus, E11, controls early flowering time and maturity in soybean. Mol. Breed. 2019; 39(5):70. DOI 10.1007/s11032-019-0978.

19. Watanabe S., Harada K., Abe J. Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci. 2012;61(5): 531-543. DOI 10.1270/jsbbs.61.531.

20. Watanabe S., Hideshima R., Xia Z., Tsubokura Y., Sato S., Nakamoto Y., Yamanaka N., Takahashi R., Ishimoto M., Anai T., Tabata S., Harada K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics. 2009;182(4):1251-1262. DOI 10.1534/genetics.108.098772.

21. Watanabe S., Xia Z., Hideshima R, Tsubokura Y., Sato S., Yamanaka N., Takahashi R., Anai T., Tabata S., Kitamura K., Harada K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics. 2011;188(2):395-407. DOI 10.1534/genetics.110.125062.

22. Wu F., Sedivy E.J., Price W.B., Haider W., Hanzawa Y. Evolutionary trajectories of duplicated FT homologues and their roles in soybean domestication. Plant J. 2017;90(5):941-953. DOI 10.1111/tpj.13521.

23. Xia Z., Watanabe S., Yamada T., Tsubokura Y., Nakashima H., Zhai H., Anai T., Sato S., Yamazaki T., Lü S., Wu H., Tabata S., Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc. Natl. Acad. Sci. USA. 2012;109(32):E2155-E2164. DOI 10.1073/pnas.1117982109.

24. Xu M., Xu Z., Liu B., Kong F., Tsubokura Y., Watanabe S., Xia Z., Harada K., Kanazawa A., Yamada T., Abe J. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol. 2013; 13:91. DOI 10.1186/1471-2229-13-91.

25. Xu M., Yamagishi N., Zhao C., Takeshima R., Kasai M., Watanabe S., Kanazawa A., Yoshikawa N., Liu B., Yamada T., Abe J. The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiol. 2015;168(4):1735-1746. DOI 10.1104/pp.15.00763.

26. Zhai H., Lü S., Liang S., Wu H., Zhang X., Liu B., Kong F., Yuan X., Li J., Xia Z. GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS One. 2014;9(2):e89030. DOI 10.1371/journal.pone.0089030.

27. Zhao C., Takeshima R., Zhu J., Xu M., Sato M., Watanabe S., Kanazawa A., Liu B., Kong F., Yamada T., Abe J. A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biol. 2016; 16(1):1-15. DOI 10.1186/s12870-016-0704-9.

28. Zhu J., Takeshima R., Harigai K., Xu M., Kong F., Liu B., Kanazawa A., Yamada T., Abe J. Loss of function of the E1-Like-b gene associates with early flowering under long-day conditions in soybean. Front. Plant Sci. 2019;9:1867. DOI 10.3389/fpls.2018.01867.

29. Zhukovsky P.M. Cultivated Plants and Their Relatives. Leningrad: Kolos Publ., 1964. (in Russian)


Рецензия

Просмотров: 1143


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)