1. Albarnaz J.D., Torres A.A., Smith G.L. Modulating vaccinia virus immunomodulators to improve immunological memory. Viruses. 2018; 10(3):101. https://doi.org/10.3390/v10030101.
2. Blanchard T.J., Alcami A., Andrea P., Smith G.L. Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J. Gen. Virol. 1998;79(Pt. 5):1159-1167. https://doi.org/10.1099/0022-1317-79-5-1159.
3. Drexler I., Heller K., Wahren B., Erfle V., Sutter G. Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J. Gen. Virol. 1998;79(Pt. 2): 347-352. https://doi.org/10.1099/0022-1317-79-2-347.
4. Eto A., Saito T., Yokote H., Kurane I., Kanatani Y. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8. Vaccine. 2015;33(45):6106-6111. https://doi.org/10.1016/j.vaccine.2015.07.111.
5. Falkner F.G., Moss B. Transient dominant selection of recombinant vaccinia viruses. J. Virol. 1990;64(6):3108-3111. https://doi.org/10.1128/JVI.64.6.3108-3111.1990.
6. Guidelines for Clinical Trials of Medicinal Products (Immunobiological Medicinal Products). Part 2. Moscow: Grif and K Publ., 2012. (in Russian)
7. Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-3066. https://doi.org/10.1093/nar/gkf436.
8. Kidokoro M., Shida H. Vaccinia virus LC16m8∆ as a vaccine vector for clinical applications. Vaccines. 2014;2(4):755-771. https://doi.org/10.3390/vaccines2040755.
9. Kretzschmar M., Wallinga J., Teunis P., Xing S., Mikolajczyk R. Frequency of adverse events after vaccination with different vaccinia strains. PLoS Med. 2006;3(8):e272. https://doi.org/10.1371/journal.pmed.0030272.
10. Li H., Durbin R. Fast and accurate short read alignment with Burrows- Wheeler transform. Bioinformatics. 2009;25(14):1754-1760. https://doi.org/10.1093/bioinformatics/btp324.
11. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078-2079. https://doi.org/10.1093/bioinformatics/btp352.
12. McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., DePristo M.A. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303. https://doi.org/10.1101/gr.107524.110.
13. Moss B. Smallpox vaccines: Targets of protective immunity. Immunol. Rev. 2011;239(1):8-26. https://doi.org/10.1111/j.1600-065X.2010.00975.x.
14. Nolen L.D., Osadebe L., Katomba J., Likofata J., Mukadi D., Monroe B., Doty J., Hughes C.M., Kabamba J., Malekani J., Bomponda P.L., Lokota J.I., Balilo M.P., Likafi T., Lushima R.S., Ilunga B.K., Nkawa F., Pukuta E., Karhemere S., Tamfum J.J., Nguete B., Wemakoy E.O., McCollum A.M., Reynolds M.G. Extended human-to-human transmission during a monkeypox outbreak in the Democratic Republic of the Congo. Emerg. Infect. Dis. 2016;22(6):1014-1021. https://doi.org/10.3201/eid2206.150579.
15. Okonechnikov K., Golosova O., Fursov M., UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012; 28(8):1166-1167. https://doi.org/10.1093/bioinformatics/bts091.
16. Reynolds M.G., Doty J.B., McCollum A.M., Olson V.A., Nakazawa Y. Monkeypox re-emergence in Africa: a call to expand the concept and practice of One Health. Expert Rev. Anti Infect. Ther. 2019;17(2): 129-139. https://doi.org/10.1080/14787210.2019.1567330.
17. Robinson J.T., Thorvaldsdottir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative genomics viewer. Nat. Biotechnol. 2011;29(1):24-26. https://doi.org/10.1038/nbt.1754.
18. Sanchez-Sampedro L., Perdiguero B., Mejias-Perez E., Garcia-Arriaza J., Di Pilato M., Esteban M. The evolution of poxvirus vaccines. Viruses. 2015;7(4):1726-1803. https://doi.org/10.3390/v7041726.
19. Shchelkunov S.N. Emergence and reemergence of smallpox: the need in development of a new generation smallpox vaccine. Vaccine. 2011;29(Suppl. 4):D49-D53. https://doi.org/10.1016/j.vaccine.2011.05.037.
20. Shchelkunov S.N. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013;9(12):e1003756. https://doi.org/10.1371/journal.ppat.1003756.
21. Shchelkunov S.N., Shchelkunova G.A. Genes that control vaccinia virus immunogenicity. Acta Naturae. 2020;12(1):33-41. https://doi.org/10.32607/actanaturae.10935.
22. Singh R.K., Balamurugan V., Bhanuprakash V., Venkatesan G., Hosamani M. Emergence and reemergence of vaccinia-like viruses: global scenario and perspectives. Indian J. Virol. 2012;23(1):1-11. https://doi.org/10.1007/s13337-012-0068-1.
23. Smallpox and its Eradication. Geneva: World Health Organization, 1988.
24. Volz A., Sutter G. Modified vaccinia virus Ankara. History, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 2017;97:187-243. https://doi.org/10.1016/bs.aivir.2016.07.001.
25. Yakubitskiy S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N. Attenuation of vaccinia virus. Acta Naturae. 2015;7(4):113-121. https://doi.org/10.32607/20758251-2015-7-4-113-121.
26. Yakubitskiy S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N. Highly immunogenic variant of attenuated vaccinia virus. Dokl. Biochem. Biophys. 2016;466:35-38. https://doi.org/10.1134/S1607672916010105.