1. Bader M. ACE2, angiotensin-(1-7), and Mas: the other side of the coin. Pflugers Arch. 2013;465(1):79-85. https://doi.org/10.1007/s00424-012-1120-0.
2. Bao L., Deng W., Huang B., Gao H., Liu J., Ren L., Wei Q., Yu P., Xu Y., Qi F., Qu Y., Li F., Lv Q., Wang W., Xue J., Gong S., Liu M., Wang G., Wang S., Song Z., Zhao L., Liu P., Zhao L., Ye F., Wang H., Zhou W., Zhu N., Zhen W., Yu H., Zhang X., Guo L., Chen L., Wang C., Wang Y., Wang X., Xiao Y., Sun Q., Liu H., Zhu F., Ma C., Yan L., Yang M., Han J., Xu W., Tan W., Peng X., Jin Q., Wu G., Qin C. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020;583(7818):830-833. https://doi.org/10.1038/s41586-020-2312-y.
3. Belouzard S., Chu V.C., Whittaker G.R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. USA. 2009;106(14):5871-5876. https://doi.org/10.1073/pnas.0809524106.
4. Bruter A.V., Korshunova D.S., Kubekina M.V., Sergiev P.S., Kalinina A.A., Ilchuk K.A., Yuliya Yu., Silaeva Y.Y., Korshunov E.K., Soldatov V.O., Deykin A.V. Novel transgenic mice with Cre-dependent co-expression of GFP and human ACE2: a safe tool for study of COVID-19 pathogenesis. Transgenic Res. 2021;30(3):289-301. https://doi.org/10.1007/s11248-021-00249-8.
5. Dolskiy A.A., Gudymo A.S., Taranov O.S., Grishchenko I.V., Shitik E.M., Prokopov D.Y., Soldatov V.O., Sobolevskaya E.V., Bodnev S.A., Danilchenko N.V., Moiseeva A.A., Torzhkova P.Y., Bulanovich Y.A., Onhonova G.S., Ivleva E.K., Kubekina M.V., Belykh A.E., Tregubchak T.V., Ryzhikov A.B., Gavrilova E.V., Maksyutov R.A., Deykin A.V., Yudkin D.V. The tissue distribution of SARS-CoV-2 in transgenic mice with inducible ubiquitous expression of hACE2. Front. Mol. Biosci. 2022;8:821506. https://doi.org/10.3389/fmolb.2021.821506.
6. Ge X.-Y., Li J.-L., Yang X.-L., Chmura A.A., Zhu G., Epstein J.H., Mazet J.K., Hu B., Zhang W.L., Peng C., Zhang Y.-J., Luo C.-M., Tan B., Wang N., Zhu Y., Crameri G., Zhang S.-Y., Wang L.-F., Daszak P., Shi Z-L. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503(7477): 535-538. https://doi.org/10.1038/nature12711.
7. Glass W.G., Subbarao K., Murphy B., Murphy P.M. Mechanisms of host defense following severe acute respiratory syndromecoronavirus (SARS-CoV) pulmonary infection of mice. J. Immunol. 2004; 173(6):4030-4039. https://doi.org/10.4049/jimmunol.173.6.4030.
8. Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., Luo S.W., Li P.H., Zhang L.J., Guan Y.J., Butt K.M., Wong K.L., Chan K.W., Lim W., Shortridge K.F., Yuen K.Y., Peiris J.S., Poon L.L. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003; 302(5643):276-278. https://doi.org/10.1126/science.1087139.
9. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., Yang P., Sarao R., Wada T., Leong-Poi H., Crackower M.A., Fukamizu A., Hui C.-C., Hein L., Uhlig S., Slutsky A.S., Jiang C., Penninger J.M. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112-116. https://doi.org/10.1038/nature03712.
10. Jiang R.-D., Liu M.-Q., Chen Y., Shan C., Zhou Y.-W., Shen X.-R., Li Q., Zhang L., Zhu Y., Si H.-R., Wang Q., Min J., Wang X., Zhang W., Li B., Zhang H.-J., Baric R.S., Zhou P., Yang X.-L., Shi Z.-L. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell. 2020;182(1): 50-58.e8. https://doi.org/10.1016/j.cell.2020.05.027.
11. Kuba K., Imai Y., Ohto-Nakanishi T., Penninger J.M. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol. Ther. 2010;128(1): 119-128. https://doi.org/10.1016/j.pharmthera.2010.06.003.
12. Lai M.M.C., Perlman S., Anderson J. Coronaviridae. In: Knipe D.M., Howley P.M. (Eds.). Fields Virology. Philadelphia: Lippincott Williams and Wilkins, 2007;1305-1335.
13. Lan J., Ge J., Yu J., Shan S., Zhou H., Fan S., Zhang Q., Shi X., Wang Q., Zhang L., Wang X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-220. https://doi.org/10.1038/s41586-020-2180-5.
14. Li F., Li W., Farzan M., Harrison S.C. Structure of SARS coronavirus spike receptor binding domain complexed with receptor. Science. 2005;309(5742):1864-1868. https://doi.org/10.1126/science.1116480.
15. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K.S.M., Lau E.H.Y., Wong J.Y., Xing X., Xiang N., Wu Y., Li C., Chen Q., Li D., Liu T., Zhao J., Liu M., Tu W., Chen C., Jin L., Yang R., Wang Q., Zhou S., Wang R., Liu H., Luo Y., Liu Y., Shao G., Li H., Tao Z., Yang Y., Deng Z., Liu B., Ma Z., Zhang Y., Shi G., Lam T.T.Y., Wu J.T., Gao G.F., Cowling B.J., Yang B., Leung G.M., Feng Z. Early transmission dynamics in Wuhan, China, of novel coronavirusinfected pneumonia. N. Engl. J. Med. 2020; 382(13):1199-1207. https://doi.org/10.1056/NEJMoa2001316.
16. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., Choe H., Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-454. https://doi.org/10.1038/nature02145.
17. Liu F.-L., Wu K., Sun J., Duan Z., Quan X., Kuang J., Chu S., Pang W., Gao H., Xu L., Li Y.-C., Zhang H.-L., Wang X.-H., Luo R.-H., Feng X.-L., Schöler H.R., Chen X., Pei D., Wu G., Zheng Y.-T., Chen J. Rapid generation of ACE2 humanized inbred mouse model for COVID-19 with tetraploid complementation. Natl. Sci. Rev. 2021;8(2):nwaa285. https://doi.org/10.1093/nsr/nwaa285.
18. Martina B.E., Haagmans B.L., Kuiken T., Fouchier R.A., Rimmelzwaan G.F., Van Amerongen G., Peiris J.S.M., Lim W., Osterhaus A.D.M.E. Virology: SARS virus infection of cats and ferrets. Nature. 2003;425(6961):915. https://doi.org/10.1038/425915a.
19. McCray P.B. Jr., Pewe L., Wohlford-Lenane C., Hickey M., Manzel L., Shi L., Netland J., Jia H.P., Halabi C., Sigmund C.D., Meyerholz D.K., Kirby P., Look D.C., Perlman S. Lethal infection of K18- hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 2007;81(2):813-821. https://doi.org/10.1128/JVI.02012-06.
20. Menachery V.D., Yount B.L. Jr., Sims A.C., Debbink K., Agnihothram S.S., Gralinski L.E., Graham R.L., Scobey T., Plante J.A., Royal S.R., Swanstrom J., Sheahan T.P., Pickles R.J., Corti D., Randell S.H., Lanzavecchia A., Marasco W.A., Baric R.S. ARS-like WIV1-CoV poised for human emergence. Proc. Natl. Acad. Sci. USA. 2016;113(11):3048-3053. https://doi.org/10.1073/pnas.1517719113.
21. Netland J., Meyerholz D.K., Moore S., Cassell M., Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 2008;82(15):7264-7275. https://doi.org/10.1128/JVI.00737-08.
22. Ostrowski L.E., Hutchins J.R., Zakel K., O’Neal W.K. Targeting expression of a transgene to the airway surface epithelium using a ciliated cell-specific promoter. Mol. Ther. 2003;8(4):637-645. https://doi.org/10.1016/S1525-0016(03)00221-1.
23. Peiris J.S., Lai S.T., Poon L.L., Guan Y., Yam L.Y.C., Lim W., Nicholls J., Yee W.K.S., Yan W.W., Cheung M.T., Cheng V.C.C., Chan K.H., Tsang D.N.C., Yung R.W.H., Ng T.K., Yuen K.Y., SARS study group. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319-1325. https://doi.org/10.1016/s0140-6736(03)13077-2.
24. Reusken C.B., Haagmans B.L., Müller M.A., Gutierrez C., Godeke G.J., Meyer B., Muth D., Raj V.S., Smits-De Vries L., Corman V.M., Drexler J.-F., Smits S.L., El Tahir Y.E., De Sousa R., van Beek J., Nowotny N., van Maanen K., Hidalgo-Hermoso E., Bosch B.-J., Rottier P., Osterhaus A., Gortázar-Schmidt C., Drosten C., Koopmans M.P. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet. Infect. Dis. 2013;13(10):859-866. https://doi.org/10.1016/S1473-3099(13)70164-6.
25. Roberts A., Vogel L., Guarner J., Hayes N., Murphy B., Zaki S., Subbarao K. Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J. Virol. 2005;79(1):503-511. https://doi.org/10.1128/JVI.79.1.503-511.2005.
26. Smirnov A., Fishman V., Yunusova A., Korablev A., Serova I., Skryabin B.V., Rozhdestvensky T.S., Battulin N. DNA barcoding reveals that injected transgenes are predominantly processed by homologous recombination in mouse zygote. Nucleic Acids Res. 2020;48(2): 719-735. https://doi.org/10.1093/nar/gkz1085.
27. Subbarao K., Roberts A. Is there an ideal animal model for SARS? Trends Microbiol. 2006;14(7):299-303. https://doi.org/10.1016/j.tim.2006.05.007.
28. Sun S.-H., Chen Q., Gu H.-J., Yang G., Wang Y.-X., Huang X.-Y., Liu S.-S., Zhang N.-N., Li X.-F., Xiong R., Guo Y., Deng Y.-Q., Huang W.-J., Liu Q., Liu Q.-M., Shen Y.-L., Zhou Y., Yang X., Zhao T.-Y., Fan C.-F., Zhou Y.-S., Qin C.-F., Wang Y.-C. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe. 2020;28(1):124-133.e4. https://doi.org/10.1016/j.chom.2020.05.020.
29. Takaki H., Oshiumi H., Shingai M., Matsumoto M., Seya T. Development of mouse models for analysis of human virus infections. Microbiol. Immunol. 2017;61(3-4):107-113. https://doi.org/10.1111/1348-0421.12477.
30. Tseng C.T., Huang C., Newman P., Wang N., Narayanan K., Watts D.M., Makino S., Packard M.M., Zaki S.R., Chan T.-S., Peters C.J. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-converting enzyme 2 virus receptor. J. Virol. 2007;81(3):1162-1173. https://doi.org/10.1128/JVI.01702-06.
31. van Boheemen S., de Graaf M., Lauber C., Bestebroer T.M., Raj V.S., Zaki A.M., Osterhaus A.D., Haagmans B.L., Gorbalenya A.E., Snijder E.J., Fouchier R.A. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012;3(6):e00473-12. https://doi.org/10.1128/mBio.00473-12.
32. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decadelong structural studies of SARS coronavirus. J. Virol. 2020;94(7): e00127-20. https://doi.org/10.1128/jvi.00127-20.
33. Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z., Lu G., Qiao C., Hu Y., Yuen K.-Y., Wang Q., Zhou H., Yan J., Qi J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181(4):894-904. https://doi.org/10.1016/j.cell.2020.03.045.
34. Woo P.C.Y., Lau S.K.P., Huang Y., Yuen K.-Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. (Maywood). 2009a;234(10):1117-1127. https://doi.org/10.3181/0903-MR-94.
35. Woo P.C., Lau S.K., Lam C.S., Lai K.K., Huang Y., Lee P., Luk G.S., Dyrting K.C., Chan K.H., Yuen K.Y. Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. J. Virol. 2009b;83(2):908-917. https://doi.org/10.1128/JVI.01977-08.
36. Yang X.H., Deng W., Tong Z., Liu Y.X., Zhang L.F., Zhu H., Gao H., Huang L., Liu Y.L., Ma C.M., Xu Y.F., Ding M.X., Deng H.K., Qin C. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp. Med. 2007; 57(5):450-459. PMID: 17974127.
37. Yinda C.K., Port J.R., Bushmaker T., Owusu I.O., Avanzato V.A., Fischer R.J., Schulz J.E., Holbrook M.G., Hebner M.J., Rosenke R., Thomas T., Marzi A., Best S.M., de Wit E., Shaia C., van Doremalen N., Munster V.J. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. bioRxiv. 2020;Aug 11; 2020.08.11.246314. https://doi.org/10.1101/2020.08.11.246314.
38. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D.M.E., Fouchier R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012;367(19):1814- 1820. https://doi.org/10.1056/NEJMoa1211721.
39. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu S., Zhang Y., Chen H., Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3.
40. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., Chen H.-D., Chen J., Luo Y., Guo H., Jiang R.-D., Liu M.-Q., Chen Y., Shen X.-R., Wang X., Zheng X.-S., Zhao K., Chen Q.-J., Deng F., Liu L.-L., Yan B., Zhan F.-X., Wang Y.-Y., Xiao G.-F., Shi Z.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. https://doi.org/10.1038/s41586-020-2012-7.
41. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W. A novel soronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382(8):727-733. https://doi.org/10.1056/NEJMoa2001017.