1. Andreote F.D., Rocha U.N., Araújo W.L., Azevedo J.L., van Overbeek L.S. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie Leeuwenhoek. 2010; 97(4):389-399. https://doi.org/10.1007/s10482-010-9421-9.
2. Arkhipova T.N., Evseeva N.V., Tkachenko O.V., Burygin G.L., Vysotskaya L.B., Akhtyamova Z.A., Kudoyarova G.R. Rhizobacteria inoculation effects on phytohormone status of potato microclones cultivated in vitro under osmotic stress. Biomolecules. 2020;10(9): 1231. https://doi.org/10.3390/biom10091231.
3. Bacilio M., Moreno M., Lopez-Aguilar D.R., Bashan Y. Scaling from the growth chamber to the greenhouse to the field: demonstration of diminishing effects of mitigation of salinity in peppers inoculated with plant growth-promoting bacterium and humic acids. Appl. Soil Ecol. 2017;119:327-338. https://doi.org/10.1016/j.apsoil.2017.07.002.
4. Baldani V.L.D., Baldani J.I., Döbereiner J. Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol. 1983;29(8):924-929. https://doi.org/10.1139/m83-148.
5. Belimov A.A., Dodd I.C., Safronova V.I., Shaposhnikov A.I., Azarova T.S., Makarova N.M., Davies W.J., Tikhonovich I.A. Rhizobacteria that produce auxins and contain 1-amino-cyclopropane- 1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum). Ann. Appl. Biol. 2015; 167(1):11-25. https://doi.org/10.1111/aab.12203.
6. Burygin G.L., Kargapolova K.Y., Evseeva N.V., Tkachenko O.V. Peculiarities of plant inoculation with rhizosphere bacteria as a factor increasing the efficacy of potato microclonal propagation. Vestnik Biotehnologii i Fiziko-Khimicheskoy Biologii im. Y.А. Ovchinnikova = Yu.A. Ovchinnikov Bulletin of Biotechnology and Physical and Chemical Biology. 2018;14(2):12-16. (in Russian)
7. Burygin G.L., Kargapolova K.Y., Kryuchkova Y.V., Avdeeva E.S., Gogoleva N.E., Ponomaryova T.S., Tkachenko O.V. Ochrobactrum cytisi IPA7.2 promotes growth of potato microplants and is resistant to abiotic stress. World J. Microbiol. Biotechnol. 2019;35(4):55. https://doi.org/10.1007/s11274-019-2633-x.
8. Burygin G.L., Popova I.A., Kargapolova K.Y., Tkachenko O.V., Matora L.Y., Shchyogolev S.Y. A bacterial isolate from the rhizosphere of potato (Solanum tuberosum L.) identified as Ochrobactrum lupini IPA7.2. Agric. Biol. 2017;52(1):105-115. https://doi.org/10.15389/agrobiology.2017.1.105eng.
9. Castillo-Pérez L.J., Martínez-Soto D., Fortanelli-Martínez J., Carranza- Álvarez C. Asymbiotic seed germination, in vitro seedling development, and symbiotic acclimatization of the Mexican threatened orchid Stanhopea tigrina. Plant Cell Tissue Organ Cult. 2021;146:249-257. https://doi.org/10.1007/s11240-021-02064-9.
10. Cesari A.B., Paulucci N.S., López-Gómez M., Hidalgo-Castellanos J., Plá C.L., Dardanelli M.S. Performance of Bradyrhizobium and Bradyrhizobium-Azospirillum in alleviating the effects of waterrestrictive conditions during the early stages of Arachis hypogaea growth. J. Plant Growth Regul. 2019;38:1362-1374. https://doi.org/10.1007/s00344-019-09939-4.
11. Dias A.C.F., Costa F.E.C., Andreote F.D., Lacava P.T., Teixeira M.A., Assumpção L.C., Araújo W.L., Azevedo J.L., Melo I.S. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J. Microbiol. Biotechnol. 2009;25:189-195. https://doi.org/10.1007/s11274-008-9878-0.
12. Döbereiner J., Day J.M. Associative symbioses in tropical grasses: characterization of microorganisms and nitrogen-fixing sites. In: Pro-ceedings of the 1st Int. Symp. on Nitrogen Fixation. Washington State Univ., 1976;518-538.
13. Evseeva N.V., Tkachenko O.V., Denisova A.Y., Burygin G.L., Veselov D.S., Matora L.Y., Shchyogolev S.Y. Functioning of plant-bacterial associations under osmotic stress in vitro. World J. Microbiol. Biotechnol. 2019;35:195. https://doi.org/10.1007/s11274-019-2778-7.
14. Ferreira N.D.S., Sant’Anna F.H., Reis V.M., Ambrosini A., Volpiano C.G., Rothballer M., Schwab S., Baura V.A., Balsanelli E., Pedrosa F.O., Passaglia L.M.P., de Souza E.M., Hartmann A., Cassan F., Zilli J.E. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. Int. J. Syst. Evol. Microbiol. 2020;70(12):6203-6212. https://doi.org/10.1099/ijsem.0.004517.
15. Gavilanes F.Z., Andrade D.S., Zucareli C., Horácio E.H., Yunes J.S., Barbosa A.P., Alves L.A.R., Cruzatty L.G., Maddela N.R., Guimarães M.F. Co-inoculation of Anabaena cylindrica with Azospirillum brasilense increases grain yield of maize hybrids. Rhizosphere. 2020;15:100224. https://doi.org/10.1016/j.rhisph.2020.100224.
16. Kargapolova K.Y., Burygin G.L., Tkachenko O.V., Evseeva N.V., Pukhalskiy Y.V., Belimov A.A. Effectiveness of inoculation of in vitrogrown potato microplants with rhizosphere bacteria of the genus Azospirillum. Plant Cell Tissue Organ Cult. 2020;141:351-359. https://doi.org/10.1007/s11240-020-01791-9.
17. Murashige T., Skoog G. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15(3):473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.
18. Naqqash T., Hameed S., Imran A., Hanif M.K., Majeed A., van Elsas J.D. Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Front. Plant Sci. 2016;7:144. https://doi.org/10.3389/fpls.2016.00144.
19. O’Brien A.M., Harrison T.L. Host match improves root microbiome growth. Nat. Microbiol. 2021;6(9):1103-1104. https://doi.org/10.1038/s41564-021-00957-1.
20. Oliveira A.L.M., Urquiaga S., Döbereiner J., Baldani J.I. The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil. 2002;242:205-215. https://doi.org/10.1023/A:1016249704336.
21. Orlikowska T., Nowak K., Reed B. Bacteria in the plant tissue culture environment. Plant Cell Tissue Organ Cult. 2017;128:487-508. https://doi.org/10.1007/s11240-016-1144-9.
22. Oswald A., Calvo V.P., Davila D.Z., Pineda J.A. Evaluating soil rhizobacteria for their ability to enhance plant growth and tuber yield in potato. Ann. Appl. Biol. 2010;157(2):259-271. https://doi.org/10.1111/j.1744-7348.2010.00421.x.
23. Panahyan-e-Kivi M., Raei Y., Hassanpanah D. Study the effect of growth promoting bacteria (GPRB) on number and weight of mini-tubers of Solanum tuberosum cultivars in greenhouse conditions. J. Fundam. Appl. Sci. 2016;8(2S):28-38. https://doi.org/10.4314/jfas.v8i2s.556.
24. Rajasekharan P.E., Sahijram L. Plant biology and biotechnology. In: Plant Biology and Biotechnology. Vol. II. Plant genomics and biotechnology. New Delhi: Springer, 2015:417-443. https://doi.org/10.1007/978-81-322-2283-5_30.
25. Santiago C.D., Yagi S., Ijima M., Nashimoto T., Sawada M., Ikeda S., Asano K., Orikasa Y., Ohwada T. Bacterial compatibility in combined inoculations enhances the growth of potato seedlings. Microbes Environ. 2017;32(1):14-23. https://doi.org/10.1264/jsme2.ME16127.
26. Shelud’ko A.V., Shirokov A.A., Sokolova M.K., Sokolov O.I., Petrova L.P., Matora L.Y., Katsy E.I. Wheat root colonization by Azospirillum brasilense strains with different motility. Microbiology. 2010;79(5):688-695. https://doi.org/10.1134/S0026261710050140.
27. Soumare A., Diédhiou A.G., Arora N.K., Al-Ani L.K.T., Ngom M., Fall S., Hafidi M., Ouhdouch Y., Kouisni L., Sy M.O. Potential role and utilization of plant growth promoting microbes in plant tissue culture. Front. Microbiol. 2021;12:649878. https://doi.org/10.3389/fmicb.2021.649878.
28. Thomas J., Ajay D., Kumar R.R., Mandal A.K.А. Influence of beneficial microorganisms during in vivo acclimatization of in vitro-derived tea (Camellia sinensis) plants. Plant Cell Tissue Organ Cult. 2010;101:365-370. https://doi.org/10.1007/s11240-010-9687-7.
29. Tkachenko O.V., Evseeva N.V., Boikova N.V., Matora L.Y., Burygin G.L., Lobachev Y.V., Shchyogolev S.Y. Improved potato microclonal reproduction with the plant-growth promoting rhizobacteria Azospirillum. Agron. Sustain. Develop. 2015;35:1167-1174. https://doi.org/10.1007/s13593-015-0304-3.
30. Tkachenko O.V., Evseeva N.V., Terentyeva E.V., Burygin G.L., Shirokov A.А., Burov A.М., Matora L.Y., Shchyogolev S.Y. Improved production of high-quality potato seeds in aeroponics with plantgrowth- promoting rhizobacteria. Potato Res. 2021;64:55-66. https://doi.org/10.1007/s11540-020-09464-y.
31. Trdan S., Vučajnk F., Bohinc T., Vidrih M. The effect of a mixture of two plant growth-promoting bacteria from Argentina on the yield of potato, and occurrence of primary potato diseases and pest - short communication. Acta Agric. Scand. B Soil Plant Sci. 2019;69(1): 89-94. https://doi.org/10.1080/09064710.2018.1492628.
32. Wang X., Yam T., Meng Q., Zhu J., Zhang P., Wu H., Wang J., Zhao Y., Song X. The dual inoculation of endophytic fungi and bacteria promotes seedlings growth in Dendrobium catenatum (Orchidaceae) under in vitro culture conditions. Plant Cell Tissue Organ Cult. 2016;126(3):523-531. https://doi.org/10.1007/s11240-016-1021-6.
33. Yegorenkova I.V., Tregubova K.V., Burygin G.L., Matora L.Y., Ignatov V.V. Assessing the efficacy of co-inoculation of wheat seedlings with the associative bacteria Paenibacillus polymyxa 1465 and Azospirillum brasilense Sp245. Can. J. Microbiol. 2016;62(3):279-285. https://doi.org/10.1139/cjm-2015-0647.