Селективное культивирование бактериальных штаммов с липолитической и нефтеокисляющей активностью из донных осадков реки Оби в Западной Сибири
https://doi.org/10.18699/VJGB-22-55
Аннотация
Бактерии играют ключевую роль в биогеохимических циклах природных и антропогенных экосистем. В речных экосистемах бактерии, как правило, интенсивно заселяют илистые отложения. Микроорганизмы имеют важное значение в преобразовании энергии и биотрансформации органических веществ. В связи с этим донные отложения, богатые органикой, могут являться источником выделения метаболически разнообразных микроорганизмов, в том числе перспективных для промышленных биотехнологий. Целью данного исследования было выделение и изучение чистых культур микроорганизмов – продуцентов промышленно значимых ферментов и деструкторов органических веществ из донных осадков р. Оби. В качестве субстратов для выделения накопительных и чистых культур использовали свиной жир и дизельное топливо для селективного культивирования бактерий с липолитической и углеводородокисляющей активностью. Всего получена 21 чистая культура. Филогенетическое положение бактериальных изолятов определено на основе анализа последовательностей генов 16S рРНК. Выделенные на селективных средах штаммы оказались представителями родов Pseudomonas и Aeromonas класса Gammaproteobacteria и рода Microvirgula класса Betaproteobacteria. Изучена способность штаммов к росту на плотных питательных средах со свиным жиром, оливковым маслом и дизельным топливом. Липолитическая активность штаммов подтверждена культивированием на диагностической среде с трибутирином. Обнаруженное в ходе исследований филогенетическое и метаболическое разнообразие культивируемых непатогенных бактериальных штаммов с липолитической и нефтеокисляющей активностью указывает на биотехнологический потенциал выделенных нами изолятов. Наиболее перспективными оказались штаммы M. aerodenitrificans sp. LM1 и P. lini sp. KGS5K3, которые не только проявили липолитическую активность на диагностической среде с трибутирином в широком диапазоне температур, но и утилизировали такие сложные органические субстраты, как дизельное топливо, свиной жир и оливковое масло.
Об авторах
А. Л. ГерасимчукРоссия
Томск
Д. А. Ивасенко
Россия
Томск
А. А. Касымова
Россия
Томск
Ю. А. Франк
Россия
Томск
Список литературы
1. Anderson E.L., Jang J., Venterea R.T., Feyereisen G.W., Ishii S. Isolation and characterization of denitrifiers from woodchip bioreactors for bioaugmentation application. J. Appl. Microbiol. 2020;129(3):590-600. https://doi.org/10.1111/jam.14655.
2. Araya R., Tani K., Takagi T., Yamaguchi N., Nasu M. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiol. Ecol. 2003;43(1):111-119. https://doi.org/10.1111/j.15746941.2003.tb01050.x.
3. Barathi S., Vasudevan N. Utilization of petroleum hydrocarbons by Pseudomonas f luorescens isolated from petroleum contaminated soil. Environ. Int. 2001;26:413-416. https://doi.org/10.1016/S0160-4120(01)00021-6.
4. Bender J., Flieger A. Lipases as pathogenicity factors of bacterial pathogens of humans. In: Timmis K.N. (Ed.) Handbook of Hydrocarbon and Lipid Microbiology. Berlin; Heidelberg: Springer-Verlag, 2010:3241-3258. https://doi.org/10.1007/978-3-540-77587-4_246.
5. Bofill C., Prim N., Mormeneo M., Manresa A., Pastor F.I.J., Diaz P. Differential behaviour of Pseudomonas sp. 42A2 LipC, a lipase showing greater versatility than its counterpart LipA. Biochimie. 2010;92(3):307-316. https://doi.org/10.1016/j.biochi.2009.11.005.
6. Bouchez T., Patureau D., Delgenès J.P., Moletta R. Successful bacterial incorporation into activated sludge flocs using alginate. Bioresour. Technol. 2009;100(2):1031-1032. https://doi.org/10.1016/j.biortech.2008.07.028.
7. Brown B.L., Swan C.M., Auerbach D., Campbell Grant E.H., Hitt N.P., Maloney K.O., Patrick C. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. J. North Am. Benthol. Soc. 2011;30(1):310-327. https://doi.org/10.1899/10-129.1.
8. Cai X., Chen S., Yang H., Wang W., Lin L., Shen Y., Wei D. Biodegradation of waste greases and biochemical properties of a novel lipase from Pseudomonas synxantha PS1. Can. J. Microbiol. 2016;62(7):588-599. https://doi.org/10.1139/cjm-2015-0641.
9. Cea M., Sangaletti-Gerhard N., Acuña P., Fuentes I., Jorquera M., Godoy K., Osses F., Navia R. Screening transesterifiable lipid accumulating bacteria from sewage sludge for biodiesel production. Biotechnol. Rep. 2015;8:116-123. https://doi.org/10.1016/j.btre.2015.10.008.
10. Chen J., Wang P.F., Wang C., Wang X., Miao L.Z., Liu S., Yuan Q.S. Bacterial communities in riparian sediments: a large-scale longitudinal distribution pattern and response to dam construction. Front. Microbiol. 2018;9:999. https://doi.org/10.3389/fmicb.2018.00999.
11. Cleenwerck I., De Wachter M., Hoste B., Janssens D., Swings J. Aquaspirillum dispar Hylemon et al. 1973 and Microvirgula aerodenitrificans Patureau et al. 1998 are subjective synonyms. Int. J. Syst. Evol. Microbiol. 2003;53(5):1457-1459. https://doi.org/10.1099/ijs.0.02675-0.
12. Cyriaque V., Géron A., Billon G., Nesme J., Werner J., Gillan D.C., Wattiez R. Metal-induced bacterial interactions promote diversity in river-sediment microbiomes. FEMS Microbiol. Ecol. 2020;96(6):5826176. https://doi.org/10.1093/femsec/fiaa076.
13. Dai Y., Yang Y.Y., Wu Z., Feng Q.Y., Xie S.G., Liu Y. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status. Appl. Microbiol. Biotechnol. 2016;100(9):4161-4175. https://doi.org/10.1007/s00253-015-7253-2.
14. DeLong E.F. Archaea in costal marine environments. Proc. Natl. Acad. Sci. USA. 1992;89:5685-5689. https://doi.org/10.1073/pnas.89.12.5685.
15. Delorme S., Lemanceau P., Christen R., Corberand T., Meyer J.M., Gardan L. Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int. J. Syst. Evol. Microbiol. 2002;52(2):513-523. https://doi.org/10.1099/00207713-52-2-513.
16. de Oliveira L.F.V., Margis R. The source of the river as a nursery for microbial diversity. PLoS One. 2015;10(3):e0120608. https://doi.org/10.1371/journal.pone.0120608.
17. De Vrieze M., Pandey P., Bucheli T.D., Varadarajan A.R., Ahrens C.H., Weisskopf L., Bailly A. Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents. Front. Microbiol. 2015;6:1295. https://doi.org/10.3389/fmicb.2015.01295.
18. Elomari M., Coroler L., Hoste B., Gillis M., Izard D., Leclerc H. DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int. J. Syst. Bacteriol. 1996;46(4):1138-1144. https://doi.org/10.1099/00207713-46-4-1138.
19. Fendri I., Chaari A., Dhouib A., Jlassi B., Abousalham A., Carrière F., Sayadi S., Abdelkafi S. Isolation, identification and characterization of a new lipolytic Pseudomonas sp., from Tunisian soil. Environ. Technol. 2010;31(1):87-95. https://doi.org/10.1080/09593330903369994.
20. Fischer H., Wanner S.C., Pusch M. Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochemistry. 2002;61:37-55. https://doi.org/10.1023/A:1020298907014.
21. Frank Y.A., Nikitchuk K.L., Sapega A.A., Lukjanova E.A., Ivasenko D.A., Kosov A.V., Gerasimchuk A.L., Evseeva N.S. Improvement of the efficiency of oil-contaminated soils remediation in the natural conditions of the north Tomsk region and the nearby regions by indigenous microorganisms application. Izvestiya Tomskogo Polytehnicheskogo Universita. Inzhiniring Georesursov = Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2020;331(9):130-139. https://doi.org/10.18799/24131830/2020/9/2815. (in Russian)
22. Frank Y.A., Vorobiev E.D., Vorobiev D.S., Trifonov A.A., Antsiferov D.V., Soliman Hunter T., Wilson S.P., Strezov V. Preliminary screening for microplastic concentrations in the surface water of the Ob and Tom rivers in Siberia, Russia. Sustainability. 2021;13(1):80. https://doi.org/10.3390/su13010080.
23. Gerasimchuk A.L., Ivasenko D.A., Bukhtiyarova P.A., Antsiferov D.V., Frank Y.A. Search for new cultured lipophilic bacteria in industrial fat-containing wastes. BIO Web Conf. II Int. Sci. Conf. “Plants and Microbes: The Future of Biotechnology” (PLAMIC2020). 2020;23:02012. https://doi.org/10.1051/bioconf/20202302012.
24. Gerasimchuk A.L., Shatalov A.A., Novikov A.L., Butorova O.P., Pimenov N.V., Lein A.Y., Yanenko A.S., Karnachuk O.V. The search for sulfate-reducing bacteria in mat samples from the lost city hydrothermal field by molecular cloning. Microbiology. 2010;79(1):96-105. https://doi.org/10.1134/S0026261710010133.
25. Iyer R., Iken B., Damania A. Genome of Pseudomonas nitroreducens DF05 from dioxin contaminated sediment downstream of the San Jacinto River waste pits reveals a broad array of aromatic degradation gene determinants. Genom. Data. 2017;17(14):40-43. https://doi.org/10.1016/j.gdata.2017.07.011.
26. Kopylov A.I., Kosolapov D.B. The structure of the planktic microbial community in the lower reaches of the Ob river near Salekhard. Contemp. Probl. Ecol. 2011;4(1):1-7. https://doi.org/10.1134/
27. S1995425511010012. Koronkevich N.I., Barabanova E.A., Georgiadi A.G., Zaitseva I.S., Shaporenko S.I. Anthropogenic impacts on the water resources of the Russian Arctic basin rivers. Geogr. Nat. Resour. 2019;40(1):22-29. https://doi.org/10.1134/S1875372819010049.
28. Kovacic F., Babić N., Krauss U., Jaeger K.-E. Classification of lipolytic enzymes from bacteria. In: Rojo F. (Ed.) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of hydrocarbon and lipid microbiology. Cham: Springer, 2019;255-289. https://doi.org/10.1007/978-3-319-50418-6_39.
29. Lee S.Y., Rhee J.S. Hydrolysis of triglyceride by the whole cell of Pseudomonas putida 3SK in two-phase batch and continuous reactors systems. Biotechnol. Bioeng. 2008;44:437-443. https://doi.org/10.1002/bit.260440406.
30. Li J., Wang L.-H., Xiang F.-G., Ding W.-L., Xi L.-J., Wang M.-Q., Xiao Z.-J., Liu J.-G. Pseudomonas phragmitis sp. nov., isolated from petroleum polluted river sediment. Int. J. Syst. Evol. Microbiol. 2020;70(1):364-372. https://doi.org/10.1099/ijsem.0.003763.
31. López J.R., Diéguez A.L., Doce A., De la Roca E., De la Herran R., Navas J.I., Toranzo A.E., Romalde J.L. Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). Int. J. Syst. Evol. Microbiol. 2012;62(4):874-882. https://doi.org/10.1099/ijs.0.030601-0.
32. Mansour I., Heppell C.M., Ryo M., Rillig M.C. Application of the microbial community coalescence concept to riverine networks. Biol. Rev. 2018;93(4):1832-1845. https://doi.org/10.1111/brv.12422.
33. Mourey A., Kilbertus G. Simple media containing stabilized tributyrin for demonstrating lipolytic bacteria in foods and soils. J. Appl. Bacteriol. 1976;40:47-51. https://doi.org/10.1111/j.1365-2672.1976.tb00589.x.
34. Mulet M., Gomila M., Lemaitre B., Lalucat J., García-Valdés E. Taxonomic characterization of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov. Syst. Appl. Microbiol. 2012;35:145-149. https://doi.org/10.1016/j.syapm.2011.12.003.
35. Muriel-Millán L.F., Rodríguez-Mejía J.L., Godoy-Lozano E.E., Rivera-Gómez N., Gutierrez-Rios R.-M., Morales-Guzmán D., Trejo-Hernández M.R., Estradas-Romero A., Pardo-López L. Functional and genomic characterization of a Pseudomonas aeruginosa strain isolated from the southwestern gulf of Mexico reveals an enhanced adaptation for long-chain alkane degradation. Front. Mar. Sci. 2019;6:572. https://doi.org/10.3389/fmars.2019.00572.
36. Muyzer G., de Waal E.C., Uitterlinden U.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993;59(3):695-700. https://doi.org/10.1128/aem.59.3.695-700.1993.
37. Pabai F., Kermasha S., Morin A. Use of continuous culture to screen for lipase-producing microorganisms and interesterification of butterfat by lipase isolates. Can. J. Microbiol. 1996;42:446-452. https://doi.org/10.1139/m96-061.
38. Parte A. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 2014;42:D613-D616. https://doi.org/10.1093/nar/gkt1111.
39. Patureau D., Godon J.J., Dabert P., Bouchez T., Bernet N., Delgenes J.P., Moletta R. Microvirgula aerodenitrificans gen. nov., sp. nov., a new gram-negative bacterium exhibiting corespiration of oxygen and nitrogen oxides up to oxygen-saturated conditions. Int. J. Syst. Bacteriol. 1998;48:775-782. https://doi.org/10.1099/00207713-48-3-775.
40. Patureau D., Helloin E., Rustrian E., Bouchez T., Delgene J., Moletta R. Combined phosphate and nitrogen removal in a sequencing batch reactor using the aerobic denitrifier, Microvirgula aerodenitrificans. Water Res. 2001;35(1):189-197. https://doi.org/10.1016/s0043-1354(00)00244.
41. Peix A., Ramírez-Bahena M.-H., Velázquez E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect. Genet. Evol. 2009;9(6):1132-1147. https://doi.org/10.1016/j.meegid.2009.08.001.
42. Pellett S., Bigley V.D., Grimes D.J. Distribution of Pseudomonas aeruginosa in a riverine ecosystemt. Appl. Environ. Microbiol. 1983;45(1):328-332. https://doi.org/10.1128/aem.45.1.328-332.1983.
43. Pirnay J.-P., Matthijs S., Colak H., Chablain P., Bilocq F., Van Eldere J., De Vos D., Zizi M., Triest L., Cornelis P. Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ. Microbiol. 2005;7(7):969-980. https://doi.org/10.1111/j.1462-2920.2005.00776.x.
44. Psenner R., Alfreider A., Schwarz A. Aquatic microbial ecology: water desert, microcosm, ecosystem. What’s тext? Internat. Rev. Hydrobiol. 2008;93(4-5):606-623. https://doi.org/10.1002/IROH.200711044.
45. Ramette A., Frapolli M., Saux M.F.-L., Gruffaz C., Meyer J.-M., Défago G., Sutra L., Moënne-Loccoz Y. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst. Appl. Microbiol. 2011;34(3):180-188. https://doi.org/10.1016/j.syapm.2010.10.005.
46. Ramnath L., Sithole B., Govinden R. Identification of lipolytic enzymes isolated from bacteria indigenous to Eucalyptus wood species for application in the pulping industry. Biotechnol. Rep. 2017;15:114-124. https://doi.org/10.1016/j.btre.2017.07.004.
47. Reetz M.T., Jaeger K.E. Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chem. Phys. Lipids. 1998;93(1-2):3-14. https://doi.org/10.1016/s0009-3084(98)00033-4.
48. Sagova-Mareckova M., Boenigk J., Bouchez A., Cermakova K., Chonova T., Cordier T., Eisendle U., Elersek T., Fazi S., Fleituch T., Frühe L., Gajdosova M., Graupner N., Haegerbaeumer A., Kelly A.-M., Kopecky J., Leese F., Nõges P., Orlic S., Panksep K., Pawlowski J., Petrusek A., Piggott J.J., Rusch J.C., Salis R., Schenk J., Simek K., Stovicek A., Strand D.A., Vasquez M.I., Vrålstad T., Zlatkovic S., Zupancic M., Stoeck T. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Res. 2021;191:116767. https://doi.org/10.1016/j.watres.2020.116767.
49. Sarkar P., Roy A., Pal S., Mohapatra B., Kazy S.K., Maiti M.K., Sar P. Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. Bioresour. Technol. 2017;242:15-27. https://doi.org/10.1016/j.biortech.2017.05.010.
50. Savichev O.G., Tokarenko O.G., Pasechnik E.Yu., Nalivaiko N.G., Ivanova Е.A., Nadeina L.V. Microbiological composition of river waters in the Ob’ basin (West Siberia) and its associations with hydrochemical indices. IOP Conf. Series: Earth Environ. Sci. 2015;27:012035. https://doi.org/10.1088/1755-1315/27/1/012035.
51. Shornikova E.A. Microbiological indication of river ecosystem conditions at the oil fields in the Middle Ob’ area. Contemp. Probl. Ecol. 2008;1(3):328-334. https://doi.org/10.1134/S1995425508030077.
52. Shornikova E., Arslanova M. The experience of application of microbiological indicators in monitoring procedures of aquatic ecosystems in the Middle Ob basin. E3S Web Conf. 2020;210:07013. https://doi.org/10.1051/e3sconf/202021007013.
53. Subhash Y., Park M.J., Lee S.S. Microvirgula curvata sp. nov., isolated from hydrocarbon-contaminated soil, and emended description of the genus Microvirgula. Int. J. Syst. Evol. Microbiol. 2016;66:5309-5313. https://doi.org/10.1099/ijsem.0.001512.
54. Sudan S.K., Pal D., Bisht B., Kumar N., Chaudhry V., Patil P., Sahni G., Mayilraj S., Krishnamurthi S. Pseudomonas fluvialis sp. nov., a novel member of the genus Pseudomonas isolated from the river Ganges, India. Int. J. Syst. Evol. Microbiol. 2018;68(1):402-408. https://doi.org/10.1099/ijsem.0.002520.
55. Wang J., Li Y., Wang P., Niu L., Zhang W., Wang C. Response of bacterial community compositions to different sources of pollutants in sediments of a tributary of Taihu Lake, China. Environ. Sci. Pollut. Res. Int. 2016;23(14):13886-13894. https://doi.org/10.1007/s11356-016-6573-9.
56. Wang L., Zhang J., Li H., Yang Н., Peng C., Peng Z., Lu L. Shift in the microbial community composition of surface water and sediment along an urban river. Sci. Total. Environ. 2018;627:600- 612. https://doi.org/10.1016/j.scitotenv.2018.01.203.
57. Wei C.L., Bao S., Zhu X.Y., Huang X.X. Spatio-temporal variations of the bacterioplankton community composition in Chaohu Lake, China. Prog. Nat. Sci. 2008;18(9):1115-1122. https://doi.org/10.1016/j.pnsc.2008.04.005.
58. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991;173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991.
59. Yang J., Zhang B., Yan Y. Cloning and expression of Pseudomonas fluorescens 26-2 lipase gene in Pichia pastoris and characterizing for transesterification. Appl. Biochem. Biotechnol. 2009;159:355-365. https://doi.org/10.1007/s12010-008-8419-5.
60. Yang W., Cao H., Xu L., Zhang H., Yan Y. A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil. BMC Biotechnol. 2015;15:94. https://doi.org/10.1186/s12896-015-0214-0.
61. Zhang L., Zhao T., Wang Q., Li L., Shen T., Gao G. Bacterial community composition in aquatic and sediment samples with spatiotemporal dynamics in large, shallow, eutrophic Lake Chaohu, China. J. Freshw. Ecol. 2019;34(1):575-589. https://doi.org/10.1080/02705060.2019.1635536.