1. Auyeung V.C., Ulitsky I., McGeary S.E., Bartel D.P. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell. 2013;152(4):844-858. https://doi.org/10.1016/j.cell.2013.01.031.
2. Bandiera S., Rüberg S., Girard M., Cagnard N., Hanein S., Chrétien D., Munnich A., Lyonnet S., Henrion-Caude A. Nuclear outsourcing of RNA interference components to human mitochondria. PLoS One. 2011;6(6):e20746. https://doi.org/10.1371/journal.pone.0020746.
3. Barrey E., Saint-Auret G., Bonnamy B., Damas D., Boyer O., Gidrol X. Pre-microRNA and mature microRNA in human mitochondria. PLoS One. 2011;6(5):e20220. https://doi.org/10.1371/journal.pone.0020220.
4. Bartel D.P. Metazoan microRNAs. Cell. 2018;173(1):20-51. https://doi.org/10.1016/j.cell.2018.03.006.
5. Bian Z., Li L.-M., Tang R., Hou D.-X., Chen X., Zhang C.-Y., Zen K. Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res. 2010;20(9):1076-1078. https://doi.org/10.1038/cr.2010.119.
6. Das S., Ferlito M., Kent O.A., Fox-Talbot K., Wang R., Liu D., Raghavachari N., Yang Y., Wheelan S.J., Murphy E., Steenbergen C. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ. Res. 2012;110(12):1596-1603. https://doi.org/10.1161/CIRCRESAHA.112.267732.
7. Fang W., Bartel D.P. The menu of features that define primary microRNAs and enable de novo design of microRNA genes. Mol. Cell. 2015;60(1):131-145. https://doi.org/10.1016/j.molcel.2015.08.015.
8. Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1): D155-D162. https://doi.org/10.1093/nar/gky1141.
9. Kren B.T., Wong P.Y.-P., Sarver A., Zhang X., Zeng Y., Steer C.J. MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol. 2009;6(1):65-72. https://doi.org/10.4161/rna.6.1.7534.
10. Mercer T.R., Neph S., Dinger M.E., Crawford J., Smith M.A., Shearwood A.-M.J., Haugen E., Bracken C.P., Rackham O., Stamatoyannopoulos J.A., Filipovska A., Mattick J.S. The human mitochondrial transcriptome. Cell. 2011;146(4):645-658. https://doi.org/10.1016/j.cell.2011.06.051.
11. Nguyen T.A., Jo M.H., Choi Y.-G., Park J., Kwon S.C., Hohng S., Kim V.N., Woo J.-S. Functional anatomy of the human microprocessor. Cell. 2015;161(6):1374-1387. https://doi.org/10.1016/j.cell.2015.05.010.
12. Real R., Vargas J. M. The probabilistic basis of Jaccard’s index of similarity. Syst. Biol. 1996;45(3):380-385. https://doi.org/10.1093/sysbio/45.3.380.
13. Rolle K., Piwecka M., Belter A., Wawrzyniak D., Jeleniewicz J., Barciszewska M.Z., Barciszewski J. The sequence and structure determine the function of mature human miRNAs. PLoS One. 2016; 11(3):e0151246. https://doi.org/10.1371/journal.pone.0151246.
14. Sripada L., Tomar D., Prajapati P., Singh R., Singh A.K., Singh R. Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One. 2012;7(9):e44873. https://doi.org/10.1371/journal.pone.0044873.
15. Starega-Roslan J., Galka-Marciniak P., Krzyzosiak W.J. Nucleotide sequence of miRNA precursor contributes to cleavage site selection by Dicer. Nucleic Acids Res. 2015a;43(22):10939-10951. https://doi.org/10.1093/nar/gkv968.
16. Starega-Roslan J., Witkos T., Galka-Marciniak P., Krzyzosiak W. Sequence features of Drosha and Dicer cleavage sites affect the complexity of isomiRs. Int. J. Mol. Sci. 2015b;16(12):8110-8127. https://doi.org/10.3390/ijms16048110.
17. Vishnevsky O.V., Kolchanov N.A. ARGO: a web system for the detection of degenerate motifs and large-scale recognition of eukaryotic promoters. Nucleic Acids Res. 2005;33(Web Server Iss.):W417W422. https://doi.org/10.1093/nar/gki459.
18. Vorozheykin P.S., Titov I.I. Erratum to: How animal miRNAs structure influences their biogenesis. Russ. J. Genet. 2020;56(8):1012-1024. https://doi.org/10.1134/S1022795420220019.
19. Wang W.-X., Visavadiya N.P., Pandya J.D., Nelson P.T., Sullivan P.G., Springer J.E. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp. Neurol. 2015;265:84-93. https://doi.org/10.1016/j.expneurol.2014.12.018.