Генетическая канва герменевтики феномена сочетания болезней человека
https://doi.org/10.18699/VJGB-23-03
Аннотация
Структура заболеваний у человека неоднородна, характеризуется различными вариантами сочетаний болезней, включая сопутствующие патологии, связанные общим патогенетическим механизмом, а также болезни, редко проявляющиеся совместно на фенотипическом уровне. В последнее время отмечается рост интереса к изучению закономерностей развития не отдельных болезней, а целых семейств, связанных общими патогенетическими механизмами и общими генами, вовлеченными в их развитие. В результате установлен существенный генетический компонент, контролирующий образование конгломератов болезней сложным образом, через функционально взаимодействующие модули отдельных генов в генных сетях. Аналитический обзор исследований по проблематике разных аспектов сочетания болезней и является целью настоящей работы. В обзоре использована метафора герменевтического круга для познания структуры закономерных связей между болезнями, приведены концептуальные рамки, связанные с множественностью заболеваний у индивида. Рассмотрена существующая терминология применительно к ним, среди которых мультиморбидность, полипатии, коморбидность, конгломераты, семейства, «вторые болезни», синтропия и другие. Приведены ключевые результаты, чрезвычайно полезные, прежде всего, для описания генетической архитектуры болезней многофакторной природы. Обобщения по проблеме исследования феномена сочетания болезней позволяют приблизиться к систематизации и естественной классификации болезней. С точки зрения практического здравоохранения описание феномена сочетания болезней имеет решающее значение для расширения интерпретационного горизонта клинициста и выхода за пределы узких, ориентированных на конкретную болезнь терапевтических решений.
Об авторах
Е. Ю. БрагинаРоссия
Томск
В. П. Пузырёв
Россия
Томск
Список литературы
1. Azaïs B., Bowis J., Wismar M. Facing the challenge of multimorbidity. J. Comorb. 2016;6(1):1-3. https://doi.org/10.15256/joc.2016.6.71.
2. Barabási A.L., Gulbahce N., Loscalzo J. Network medicine: a networkbased approach to human disease. Nat. Rev. Genet. 2011;12(1):56-68. https://doi.org/10.1038/nrg2918.
3. Biesecker L.G. Lumping and splitting: molecular biology in the genetics clinic. Clin. Genet. 1998;53(1):3-7. https://doi.org/10.1034/j.1399-0004.1998.531530102.x.
4. Blair D.R., Lyttle C.S., Mortensen J.M., Bearden C.F., Jensen A.B., Khiabanian H., Melamed R., Rabadan R., Bernstam E.V., Brunak S., Jensen L.J., Nicolae D., Shah N.H., Grossman R.L., Cox N.J., White K.P., Rzhetsky A. A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk. Cell. 2013;155(1):70-80. https://doi.org/10.1016/j.cell.2013.08.030.
5. Bosch L., Bosch B., De Boeck K., Nawrot T., Meyts I., Vanneste D., Le Bourlegat C.A., Croda J., da Silva Filho L.V.R.F. Cystic fibrosis carriership and tuberculosis: hints toward an evolutionary selective advantage based on data from the Brazilian territory. BMC Infect. Dis. 2017;17(1):340. https://doi.org/10.1186/s12879-017-2448-z.
6. Boyle E.A., Li Y.I., Pritchard J.K. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169(7):1177-1186. https://doi.org/10.1016/j.cell.2017.05.038.
7. Bragina E.Y., Goncharova I.A., Garaeva A.F., Nemerov E.V., Babovskaya A.A., Karpov A.B., Semenova Y.V., Zhalsanova I.Z., Gomboeva D.E., Saik O.V., Zolotareva O.I., Ivanisenko V.A., Dosenko V.E., Hofestaedt R., Freidin M.B. Molecular relationships between bronchial asthma and hypertension as comorbid diseases. J. Integr. Bioinform. 2018;15(4):20180052. https://doi.org/10.1515/jib-2018-0052.
8. Bragina E.Yu., Goncharova I.A., Zhalsanova I.Z., Nemerov E.V., Nazarenko M.S., Freidin M.B., Puzyrev V.P. Genetic comorbidity of hypertension and bronchial asthma. Arterial’naya Gipertenziya = Arterial Hypertension. 2022;28(1):87-95. https://doi.org/10.18705/1607-419X- 2022-28-1-87-95. (in Russian)
9. Branigan G.L., Soto M., Neumayer L., Rodgers K., Brinton R.D. Association between hormone-modulating breast cancer therapies and incidence of neurodegenerative outcomes for women with breast cancer. JAMA Netw. Open. 2020;3(3):e201541. https://doi.org/10.1001/jamanetworkopen.2020.1541.
10. Brown M.S., Goldstein J.L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232(4746):34-47. https://doi.org/10.1126/science.3513311.
11. Brunner H.G., van Driel M.A. From syndrome families to functional genomics. Nat. Rev. Genet. 2004;5(7):545-551. https://doi.org/10.1038/nrg1383.
12. Catalá-López F., Suárez-Pinilla M., Suárez-Pinilla P., Valderas J.M., Gómez-Beneyto M., Martinez S., Balanzá-Martínez V., Climent J., Valencia A., McGrath J., Crespo-Facorro B., Sanchez-Moreno J., Vieta E., Tabarés-Seisdedos R. Inverse and direct cancer comorbidity in people with central nervous system disorders: a metaanalysis of cancer incidence in 577,013 participants of 50 observational studies. Psychother. Psychosom. 2014;83(2):89-105. https://doi.org/10.1159/000356498.
13. Cohen J., Pertsemlidis A., Kotowski I.K., Graham R., Garcia C.K., Hobbs H.H. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 2005;37(2):161-165. https://doi.org/10.1038/ng1509.
14. Crespi B.J., Go M.C. Diametrical diseases reflect evolutionary-genetic tradeoffs: evidence from psychiatry, neurology, rheumatology, oncology and immunology. Evol. Med. Public. Health. 2015;2015(1): 216-253. https://doi.org/10.1093/emph/eov021.
15. Davidenkov S.N. Evolutionary Genetic Problems in Neuropathology. Leningrad: GIDUV Publ., 1947. (in Russian)
16. Dilman V.M. Aging, Menopause, Cancer. Moscow, 1968. (in Russian)
17. Diss G., Lehner B. The genetic landscape of a physical interaction. eLife. 2018;7:e32472. https://doi.org/10.7554/eLife.32472.
18. Divac A., Nikolic A., Mitic-Milikic M., Nagorni-Obradovic L., Petrovic-Stanojevic N., Dopudja-Pantic V., Nadaskic R., Savic A., Radojkovic D. High frequency of the R75Q CFTR variation in patients with chronic obstructive pulmonary disease. J. Cyst. Fibros. 2004;3(3):189-191. https://doi.org/10.1016/j.jcf.2004.05.049.
19. Dong G., Feng J., Sun F., Chen J., Zhao X.M. A global overview of genetically interpretable multimorbidities among common diseases in the UK Biobank. Genome Med. 2021;13(1):110. https://doi.org/10.1186/s13073-021-00927-6.
20. Dzau V.J., Antman E.M., Black H.R., Hayes D.L., Manson J.E., Plutzky J., Popma J.J., Stevenson W. The cardiovascular disease continuum validated: clinical evidence of improved patient outcomes. Part I: Pathophysiology and clinical trial evidence (risk factors through stable coronary artery disease). Circulation. 2006;114(25):2850-2870. https://doi.org/10.1161/CIRCULATIONAHA.106.655688.
21. Feinstein A.R. The pre-therapeutic classification of co-morbidity in chronic disease. J. Chronic Dis. 1970;23(7):455-468. https://doi.org/10.1016/0021-9681(70)90054-8.
22. Ferreira M.A., Matheson M.C., Tang C.S., Granell R., Ang W., Hui J., Kiefer A.K., Duffy D.L., Baltic S., Danoy P., Bui M., Price L., Sly P.D., Eriksson N., Madden P.A., Abramson M.J., Holt P.G., Heath A.C., Hunter M., Musk B., Robertson C.F., Le Souëf P., Montgomery G.W., Henderson A.J., Tung J.Y., Dharmage S.C., Brown M.A., James A., Thompson P.J., Pennell C., Martin N.G., Evans D.M., Hinds D.A., Hopper J.L., Australian Asthma Genetics Consortium Collaborators. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J. Allergy Clin. Immunol. 2014;133(6):1564-1571. https://doi.org/10.1016/j.jaci.2013.10.030.
23. Ferreira M.A., Vonk J.M., Baurecht H., Marenholz I., Tian C., Hoffman J.D., Helmer Q., Tillander A., Ullemar V., van Dongen J., … Jorgenson E., Lee Y.A., Boomsma D.I., Almqvist C., Karlsson R., Koppelman G.H., Paternoster L. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 2017;49(12):1752-1757. https://doi.org/10.1038/ng.3985.
24. Flannick J., Thorleifsson G., Beer N.L., Jacobs S.B., Grarup N., Burtt N.P., Mahajan A., Fuchsberger C., Atzmon G., Benediktsson R., … Pedersen O., Go-T2D Consortium, T2D-GENES Consortium, Groop L., Cox D.R., Stefansson K., Altshuler D. Loss-offunction mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet. 2014;46(4):357-363. https://doi.org/10.1038/ng.2915.
25. Forés-Martos J., Boullosa C., Rodrigo-Domínguez D., Sánchez-Valle J., Suay-García B., Climent J., Falcó A., Valencia A., Puig-Butillé J.A., Puig S., Tabarés-Seisdedos R. Transcriptomic and genetic associations between Alzheimer’s disease, Parkinson’s disease, and cancer. Cancers (Basel). 2021;13(12):2990. https://doi.org/10.3390/cancers13122990.
26. Freydin M.B., Ogorodova L.M., Puzyrev V.P. Pathogenetics of Allergic Diseases. Novosibirsk, 2015. (in Russian)
27. Gadamer G.-G. On the Circle of Understanding. The Relevance of Beauty. Moscow, 2010. (in Russian)
28. Goh K.I., Cusick M.E., Valle D., Childs B., Vidal M., Barabási A.L. The human disease network. Proc. Natl. Acad. Sci. USA. 2007; 104(21):8685-8690. https://doi.org/10.1073/pnas.0701361104.
29. Golubovsky M.D. Commentary on the Dialogue on Systematics. Nadezhda Mandelstam and Lyubishchev. Priroda = Nature. 2006;6: 77-80. (in Russian)
30. Gomboeva D.E., Bragina E.Y., Nazarenko M.S., Puzyrev V.P. The inverse comorbidity between oncological diseases and Huntington’s disease: review of epidemiological and biological evidence. Russ. J. Genet. 2020;56(3):269-279. https://doi.org/10.1134/S1022795420030059.
31. Guglielmotto M., Manassero G., Vasciaveo V., Venezia M., Tabaton M., Tamagno E. Estrogens inhibit amyloid-β-mediated paired helical filament-like conformation of tau through antioxidant activity and miRNA 218 regulation in hTau mice. J. Alzheimers Dis. 2020;77(3):1339-1351. https://doi.org/10.3233/JAD-200707.
32. Holodkovsky N.A. Lamarckism and Geoffreyism. Priroda = Nature. 1915;4:533-542. (in Russian)
33. Ibáñez K., Boullosa C., Tabarés-Seisdedos R., Baudot A., Valencia A. Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic metaanalyses. PLoS Genet. 2014;10(2):e1004173. https://doi.org/10.1371/journal.pgen.1004173.
34. Jia G., Zhong X., Im H.K., Schoettler N., Pividori M., Hogarth D.K., Sperling A.I., White S.R., Naureckas E.T., Lyttle C.S., Terao C., Kamatani Y., Akiyama M., Matsuda K., Kubo M., Cox N.J., Ober C., Rzhetsky A., Solway J. Discerning asthma endotypes through comorbidity mapping. Nat. Commun. 2022;13(1):6712. https://doi.org/10.1038/s41467-022-33628-8.
35. Jones K.L. Hereditary Syndromes According to David Smith. Atlasreference book. Moscow: Praktika Publ., 2011. (in Russian)
36. Kathiresan S., Willer C.J., Peloso G.M., Demissie S., Musunuru K., Schadt E.E., Kaplan L., Bennett D., Li Y., Tanaka T., … Peltonen L., Orho-Melander M., Ordovas J.M., Boehnke M., Abecasis G.R., Mohlke K.L., Cupples L.A. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet. 2009;41(1):56-65. https://doi.org/10.1038/ng.291.
37. Kaznacheev V.P. Modern Aspects of Adaptation. Novosibirsk, 1980. (in Russian)
38. Kingston A., Robinson L., Booth H., Knapp M., Jagger C., MODEM project. Projections of multi-morbidity in the older population in England to 2035: estimates from the Population Ageing and Care Simulation (PACSim) model. Age Ageing. 2018;47(3):374-380. https://doi.org/10.1093/ageing/afx201.
39. Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Lihoschvai V.A. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4-2):833-850. (in Russian)
40. Krylov A.A. To the problem of compatibility of diseases. Klinicheskaya Meditsyna = Clinical Medicine. 2000;78(1):56-58. (in Russian)
41. Lazarevic-Pasti T., Leskovac A., Momic T., Petrovic S., Vasic V. Modulators of acetylcholinesterase activity: from Alzheimer’s disease to anti-cancer drugs. Curr. Med. Chem. 2017;24(30):3283-3309. https://doi.org/10.2174/0929867324666170705123509.
42. Liu X., Li Y.I., Pritchard J.K. Trans effects on gene expression can drive omnigenic inheritance. Cell. 2019;177(4):1022-1034.e6. https://doi.org/10.1016/j.cell.2019.04.014.
43. Lupski J.R., Belmont J.W., Boerwinkle E., Gibbs R.A. Clan genomics and the complex architecture of human disease. Cell. 2011;147(1): 32-43. https://doi.org/10.1016/j.cell.2011.09.008.
44. Manolio T.A. Bringing genome-wide association findings into clinical use. Nat. Rev. Genet. 2013;14(8):549-558. https://doi.org/10.1038/nrg3523.
45. Mauro A.A., Ghalambor C.K. Trade-offs, pleiotropy, and shared molecular pathways: a unified view of constraints on adaptation. Integr. Comp. Biol. 2020;60(2):332-347. https://doi.org/10.1093/icb/icaa056.
46. McKusick V.A. Some principles of medical genetics. In: Bartalos M. (Ed.) Genetics in Medical Practice. London: Pitman Medical, 1968;43-54.
47. McKusick V.A. On lumpers and splitters, or the nosology of genetic disease. Perspect. Biol. Med. 1969;12(2):298-312. https://doi.org/10.1353/pbm.1969.0039.
48. Murmann A.E., Gao Q.Q., Putzbach W.E., Patel M., Bartom E.T., Law C.Y., Bridgeman B., Chen S., McMahon K.M., Thaxton C.S., Peter M.E. Small interfering RNAs based on huntingtin trinucleotide repeats are highly toxic to cancer cells. EMBO Rep. 2018;19(3): e45336. https://doi.org/10.15252/embr.201745336.
49. Navickas R., Petric V.K., Feigl A.B., Seychell M. Multimorbidity: what do we know? What should we do? J. Comorb. 2016;6(1):4-11. https://doi.org/10.15256/joc.2016.6.72.
50. Nazarenko M.S., Slepcov A.A., Puzyrev V.P. “Mendelian code” in the genetic structure of complex diseases. Genetics. 2022;58(10):1101-1111. https://doi.org/10.31857/S0016675822100058. (in Russian)
51. Opitz J.M., Neri G. Historical perspective on developmental concepts and terminology. Am. J. Med. Genet. A. 2013;161A(11):2711-2725. https://doi.org/10.1002/ajmg.a.36244.
52. Paigen K., Eppig J.T. A mouse phenome project. Mamm. Genome. 2000;11(9):715-717. https://doi.org/10.1007/s003350010152.
53. Palmer C.N., Irvine A.D., Terron-Kwiatkowski A., Zhao Y., Liao H., Lee S.P., Goudie D.R., Sandilands A., Campbell L.E., Smith F.J., O’Regan G.M., Watson R.M., Cecil J.E., Bale S.J., Compton J.G., DiGiovanna J.J., Fleckman P., Lewis-Jones S., Arseculeratne G., Sergeant A., Munro C.S., El Houate B., McElreavey K., Halkjaer L.B., Bisgaard H., Mukhopadhyay S., McLean W.H. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 2006;38(4):441-446. https://doi.org/10.1038/ng1767.
54. Pepe P., Vatrano S., Cannarella R., Calogero A.E., Marchese G., Ravo M., Fraggetta F., Pepe L., Pennisi M., Romano C., Ferri R., Salemi M. A study of gene expression by RNA-seq in patients with prostate cancer and in patients with Parkinson disease: an example of inverse comorbidity. Mol. Biol. Rep. 2021;48(11):7627-7631. https://doi.org/10.1007/s11033-021-06723-0.
55. Pfaundler M., Seht L.V. Über Syntropie von Krankheitszuständen. Z. Kinder-Heilk. 1921;30:100-120. https://doi.org/10.1007/BF02222706. Piro R.M. Network medicine: linking disorders. Hum. Genet. 2012; 131(12):1811-1820. https://doi.org/10.1007/s00439-012-1206-y.
56. Puzyrev V.P. Genetic bases of human comorbidity. Russ. J. Genet. 2015;51(4):408-417. https://doi.org/10.1134/S1022795415040092.
57. Puzyrev V.P., Makeeva O.A., Freidin M.B. Syntropy, genetic testing and personalized medicine. Per. Med. 2010;7(4):399-405. https://doi.org/10.2217/pme.10.35.
58. Puzyryov V.P. Liberties of genome and medical pathogenetics. Byulleten Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2002;1(2): 16-29. https://doi.org/10.20538/1682-0363-2002-2-16-29. (in Russian)
59. Quick C.R., Conway K.P., Swendsen J., Stapp E.K., Cui L., Merikangas K.R. Comorbidity and coaggregation of major depressive disorder and bipolar disorder and cannabis use disorder in a controlled family study. JAMA Psychiatry. 2022;79(7):727-735. https://doi.org/10.1001/jamapsychiatry.2022.1338.
60. Reaven G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595-1607. https://doi.org/10.2337/diab.37.12.1595.
61. Reynolds R.J., Irvin M.R., Bridges S.L., Kim H., Merriman T.R., Arnett D.K., Singh J.A., Sumpter N.A., Lupi A.S., Vazquez A.I. Genetic correlations between traits associated with hyperuricemia, gout, and comorbidities. Eur. J. Hum. Genet. 2021;29(9):1438-1445. https://doi.org/10.1038/s41431-021-00830-z.
62. Rijken M., Hujala A., van Ginneken E., Melchiorre M.G., Groenewegen P., Schellevis F. Managing multimorbidity: profiles of integrated care approaches targeting people with multiple chronic conditions in Europe. Health Policy. 2018;122(1):44-52. https://doi.org/10.1016/j.healthpol.2017.10.002.
63. Rubio-Perez C., Guney E., Aguilar D., Piñero J., Garcia-Garcia J., Iadarola B., Sanz F., Fernandez-Fuentes N., Furlong L.I., Oliva B. Genetic and functional characterization of disease associations explains comorbidity. Sci. Rep. 2017;7(1):6207. https://doi.org/10.1038/s41598-017-04939-4.
64. Ryu I., Ryu M.J., Han J., Kim S.J., Lee M.J., Ju X., Yoo B.H., Lee Y.L., Jang Y., Song I.C., Chung W., Oh E., Heo J.Y., Kweon G.R. L-Deprenyl exerts cytotoxicity towards acute myeloid leukemia through inhibition of mitochondrial respiration. Oncol. Rep. 2018;40(6):3869-3878. https://doi.org/10.3892/or.2018.6753.
65. Rzhetsky A., Wajngurt D., Park N., Zheng T. Probing genetic overlap among complex human phenotypes. Proc. Natl. Acad. Sci. USA. 2007;104(28):11694-11699. https://doi.org/10.1073/pnas.0704820104.
66. Sandilands A., Terron-Kwiatkowski A., Hull P.R., O’Regan G.M., Clayton T.H., Watson R.M., Carrick T., Evans A.T., Liao H., Zhao Y., Campbell L.E., Schmuth M., Gruber R., Janecke A.R., Elias P.M., van Steensel M.A., Nagtzaam I., van Geel M., Steijlen P.M., Munro C.S., Bradley D.G., Palmer C.N., Smith F.J., McLean W.H., Irvine A.D. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat. Genet. 2007;39(5):650-654. https://doi.org/10.1038/ng2020.
67. Serebrovskiy A.S. Some Problems of Organic Evolution. Moscow, 1973. (in Russian)
68. Shadrina A.S., Sharapov S.Z., Shashkova T.I., Tsepilov Y.A. Varicose veins of lower extremities: insights from the first large-scale genetic study. PLoS Genet. 2019;15(4):e1008110. https://doi.org/10.1371/journal.pgen.1008110.
69. Shnayder N.A., Novitsky M.A., Neznanov N.G., Limankin O.V., Asadullin A.R., Petrov A.V., Dmitrenko D.V., Narodova E.A., Popenko N.V., Nasyrova R.F. Genetic predisposition to schizophrenia and depressive disorder comorbidity. Genes (Basel). 2022;13(3):457. https://doi.org/10.3390/genes13030457.
70. Sidransky E., Nalls M.A., Aasly J.O., Aharon-Peretz J., Annesi G., Barbosa E.R., Bar-Shira A., Berg D., Bras J., Brice A., … Tsuji S., Wittstock M., Wolfsberg T.G., Wu Y.R., Zabetian C.P., Zhao Y., Ziegler S.G. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med. 2009; 361(17):1651-1661. https://doi.org/10.1056/NEJMoa0901281.
71. Spataro N., Rodríguez J.A., Navarro A., Bosch E. Properties of human disease genes and the role of genes linked to Mendelian disorders in complex disease aetiology. Hum. Mol. Genet. 2017;26(3):489-500. https://doi.org/10.1093/hmg/ddw405.
72. Stein O., Stein Y. Smooth muscle cells and atherosclerosis. Curr. Opin. Lipidol. 1995;6(5):269-274. https://doi.org/10.1097/00041433-199510000-00005.
73. Stephens Z.D., Lee S.Y., Faghri F., Campbell R.H., Zhai C., Efron M.J., Iyer R., Schatz M.C., Sinha S., Robinson G.E. Big data: astronomical or genomical? PLoS Biol. 2015;13(7):e1002195. https://doi.org/10.1371/journal.pbio.1002195.
74. Vertkin A.L. Comorbid Patient. Moscow, 2015. (in Russian)
75. Vertkin A.L., Rumyantsev M.A., Skotnikov A.S. Comorbidity. Klinicheskaya Meditsyna = Clinical Medicine. 2012;90(10):4-11. (in Russian)
76. Vilenkin A. Many Worlds in One. The Search for Other Universes. Moscow: Astrel Publ., 2010. (in Russian)
77. Vyatkin V.B. About application of the term “syntropy” in scientific research. Nauchnoye Obozreniye. Referativnyy Zhurnal = Scientific Review. Abstract Journal. 2016;3:81-84. (in Russian)
78. Wagner G.P., Kenney-Hunt J.P., Pavlicev M., Peck J.R., Waxman D., Cheverud J.M. Pleiotropic scaling of gene effects and the ‘cost of complexity’. Nature. 2008;452(7186):470-472. https://doi.org/10.1038/nature06756.
79. Wang M., Tang S., Yang X., Xie X., Luo Y., He S., Li X., Feng X. Identification of key genes and pathways in chronic rhinosinusitis with nasal polyps and asthma comorbidity using bioinformatics approaches. Front. Immunol. 2022;13:941547. https://doi.org/10.3389/fimmu.2022.941547.
80. Weiss F.U., Simon P., Bogdanova N., Mayerle J., Dworniczak B., Horst J., Lerch M.M. Complete cystic fibrosis transmembrane conductance regulator gene sequencing in patients with idiopathic chronic pancreatitis and controls. Gut. 2005;54(10):1456-1460. https://doi.org/10.1136/gut.2005.064808.
81. Werner H., Sarfstein R., Nagaraj K., Laron Z. Laron syndrome research paves the way for new insights in oncological investigation. Cells. 2020;9(11):2446. https://doi.org/10.3390/cells9112446.
82. Woese C.R., Goldenfeld N. How the microbial world saved evolution from the scylla of molecular biology and the charybdis of the modern synthesis. Microbiol. Mol. Biol. Rev. 2009;73(1):14-21. https://doi.org/10.1128/MMBR.00002-09.
83. Wray N.R., Goddard M.E., Visscher P.M. Prediction of individual genetic risk of complex disease. Curr. Opin. Genet. Dev. 2008;18(3): 257-263. https://doi.org/10.1016/j.gde.2008.07.006.
84. Zhao R., Choi B.Y., Lee M.H., Bode A.M., Dong Z. Implications of genetic and epigenetic alterations of CDKN2A (p16INK4a) in cancer. EBioMedicine. 2016;8:30-39. https://doi.org/10.1016/j.ebiom.2016.04.017.
85. Zolotareva O., Saik O.V., Königs C., Bragina E.Y., Goncharova I.A., Freidin M.B., Dosenko V.E., Ivanisenko V.A., Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Sci. Rep. 2019;9(1):16302. https://doi.org/10.1038/s41598-019-52762-w.