Development and characterization of a line with substitution of chromosome 4B of wheat Triticum aestivum L. on chromosome 4Hmar of wild barley Hordeum marinum ssp. gussoneanum (4x)
https://doi.org/10.18699/VJGB-23-66
Abstract
Introgressive hybridization is the main method of broadening the genetic diversity of bread wheat. Wild barley Hordeum marinum ssp. gussoneanum Hudson (2n = 4x = 28) has useful agronomical traits, such as high resistance to stress factors, that could be a potential source of new genes for bread wheat improvement. This study aimed to evaluate the possibility of introgression of H. marinum chromosomes into the genome of bread wheat using an incomplete amphiploid H. marinum ssp. gussoneanum (4x)–T. aestivum (Pyrotrix 28) (2n = 54) carrying the cytoplasm of wild barley. For this purpose, we crossed the line of bread wheat variety Pyrotrix 28 with an incomplete amphiploid, and then selected cytogenetically stable 42chromosome plants with a high level of fertility in hybrid progeny. Genomic in situ hybridization (GISH) revealed a pair of H. marinum chromosomes in the genome of these plants. C banding analysis confirmed that bread wheat chromosome 4B was replaced by wild barley chromosome 4Hmar. SSR markers Xgwm368 and Xgwm6 confirmed the absence of chromosome 4B, and EST markers BAWU808 and BAW112 identified chromosome 4Hmar in the genome of the isolated disomic wheatbarley substitution line. The study of this line showed that the substitution of chromosome 4B with chromosome 4Hmar resulted in a change of some morphological traits. It included intense anthocyanin coleoptile coloration, specific for H. marinum, as well as a lack of purple coloration of the ears in the leaf sheath, specific for Pyrotrix 28. Line 4Hmar(4B) showed increased performance for several traits, including plant height, number of spikes and tillers per plant, spikelet and grain number in the main spike, grain number per plant, but it had decreased values of 1000grain weight compared to wheat. Cytogenetic stability and fertility of line 4Hmar(4B) indicated a high compensation ability of barley 4Hmar for wheat chromosome 4B and confirmed their homeology.
About the Authors
L. A. PershinaRussian Federation
Novosibirsk
N. V. Trubacheeva
Russian Federation
Novosibirsk
V. K. Shumny
Russian Federation
Novosibirsk
E. D. Badaeva
Russian Federation
Moscow
References
1. Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst. Evol. 1994;192:117-145. DOI: 10.1007/BF00985912.
2. Bothmer R.V., Jacobsen N., Baden C., Jorgensen R.B., Linde-Laursen I. An Ecogeographical Study of the Genus Hordeum. Rome: IBPGR, 1991.
3. Davoyan R.O., Bebyakina I.V., Davoyan O.R., Zinchenko A.N., Davoyan E.R., Kravchenko A.M., Zubanova Y.S. The use of synthetic forms in the preservation and exploitation of the gene pool of wild common wheat relatives. Russ. J. Genet. Appl. Res. 2012;2:480-485. DOI: 10.1134/S2079059712060044.
4. Dospekhov B.A. Methodology of Field Experiments (With the Basics of Statistical Processing of Research Results. Moscow: Agropromizdat Publ., 1985. (in Russian)
5. Fang Y., Yuan J., Wang Z., Wang H., Xiao J., Yang Z. Development of T. aestivum L.–H. californicum alien chromosome lines and assignment of homoeologous groups of Hordeum californicum chromosomes. J. Genet. Genomics. 2014;41(8):439-477. DOI: 10.1016/j.jgg.2014.06.004.
6. Garthwaite A.J., von Bothmer R., Colmer T.D. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl–
7. into the shoots. J. Exp. Bot. 2005;56(419):2365-2378. DOI: 10.1093/jxb/eri229.
8. Hao M., Zhang L., Ning S., Huang L., Yuan Z., Wu B., Yan Z., Dai S., Jiang B., Zheng Y., Liu D. The resurgence of introgression breeding, as exemplified in wheat improvement. Front. Plant Sci. 2020;11: 252. DOI: 10.3389/fpls.2020.00252.
9. Islam S., Malik A.I., Islam A.K.M.R., Colmer T.D. Salt tolerance in a Hordeum marinum–Triticum aestivum amphiploid, and its parents. J. Exp. Bot. 2007;58(5):1219-1229. DOI: 10.1093/jxb/erl293.
10. Khlestkina E.K., Antonova E.V., Pershina L.A., Soloviev A.A., Badaeva E.D., Borner A.A., Salina E.A. Variability of Rc (red coleoptile) alleles in wheat and wheat-alien genetic stock collections. Cereal Res. Commun. 2011;39(4):465-474. DOI: 10.1556/CRC.39.2011.4.1.
11. Kobylyanskiy V.D. Biological characters of wild barley species in relation to aims of breeding. Biologicheskiy Zhurnal Armenii = Armenian Journal of Biology. 1967;20(10):41-51. (in Russian)
12. Kruse A. Hordeum × Triticum hybrids. Hereditas. 1973;73(1):157-161. DOI: 10.1111/j.1601-5223.1973.tb01078.x.
13. Li A., Lui D., Yang W., Kishii M. Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering. 2018;4(4):552-558. DOI: 10.1016/j.eng.2018.07.001.
14. Malik A.I., English J.P., Colmer T.D. Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined. Ann. Bot. 2009;103(2):237-248. DOI: 10.1093/aob/mcn142.
15. Martín A. Tritordeum: a man-made cereal. In: 4th Conference of Cereal Biotechnology and Breeding Jointly Organized by EUCARPIA Cereal Section November 6–9, 2017, Budapest, Hungary. Budapest, 2017;5-6.
16. Martín A., Álvarez J.B., Martín L.M., Barro F., Ballesteros J. The development of tritordeum: a novel cereal for food processing. J. Cereal Sci. 1999;30(2):85-95. DOI: 10.1006/jcrs.1998.0235.
17. Melz G., Thiele V. Chromosome locations of genes controlling ‘purple leaf base’ in rye and wheat. Euphytica. 1990;49:155-159. DOI: 10.1007/BF00027265.
18. Molnár-Láng M., Linc G. Wheat-barley hybrids and introgression lines. In: Molnár-Láng M., Ceoloni C., Dolezel J. (Eds.). Alien Introgression in Wheat. Cytogenetics, Molecular Biology and Genomics. Cham: Springer, 2015;315-346. DOI: 10.1007/978-3-319-234946_12.
19. Molnár I., Linc G., Dulai S., Nagy E.D., Molnár-Láng M. Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed and identified wheat-barley 4H(4D) disomic substitution line. Plant Breed. 2007;126(4):369-374. DOI: 10.1111/j.1439-0523.2007.01300.
20. Molnár-Láng M., Linc G., Szakács É. Wheat-barley hybridization: the last 40 years. Euphytica. 2014;195:315-329. DOI: 10.1007/s10681013-1009-9.
21. Pershina L.A., Numerova O.M., Belova L.I., Devyatkina E.P., Rakovtseva T.S., Shumny V.K. Expression of fertility during morphogenesis in self-pollinated backcrossed progenies of barley-wheat amphiploids [Hordeum geniculatum All. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70). Russ. J. Genet. 2004;40:510-514. DOI: 10.1023/B:RUGE.0000029153.61243.c2.
22. Pershina L.A., Devyatkina E.P., Belova L.I., Trubacheeva N.V., Arbuzova V.S., Kravtsova L.A. Features of alloplasmic wheat–bar ley substitution and addition lines (Hordeum marinum subsp. gusso neanum)-Triticum aestivum. Russ. J. Genet. 2009;45(10):1223-1229. DOI: 10.1134/S102279540910010X.
23. Pershina L.A., Belova L.I., Trubacheeva N.V., Osadсhaya T.S., Shumny V.K., Belan I.A., Rosseeva L.P., Nemchenko V.V., Abakumov S.N. Alloplasmic recombinant lines (H. vulgare)-T. aestivum with 1RS.1BL translocation: initial genotypes for production of common wheat varieties. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(5):544-552. DOI: 10.18699/VJ18.393. (in Russian)
24. Rahman S., Islam S., Yu Z., She M., Nevo E., Ma W. Current progress in understanding and recovering the wheat genes lost in evolution and domestication. Int. J. Mol. Sci. 2020;21(16):5836. DOI: 10.3390/ijms21165836.
25. Rey M.-D., Calderón M.-C., Rodrigo M.J., Zacarías L., Alós E., Prieto P. Novel bread wheat lines enriched in carotenoids carrying Hordeum chilense chromosome arms in the ph1b background. PLoS One. 2015;10(8):e0134598. DOI: 10.1371/journal.pone.0134598.
26. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. A microsatellite map of wheat. Genetics. 1998; 149(4):2007-2023. DOI: 10.1093/genetics/149.4.2007.
27. Rubiales D., Moral A. Resistance of Hordeum chilense against loose smuts of wheat and barley (Ustilago tritici and U. nuda) and its expression in amphiploids with wheat. Plant Breed. 2011;130(1): 101-103. DOI: 10.1111/j.1439-0523.2010.01818.x.
28. Said M., Cabrera A. A physical map of chromosome 4Hch from H. chilense containing SSR, STS and EST-SSR molecular markers. Euphytica. 2009;167:253-259. DOI: 10.1007/s10681-009-9895-6.
29. Shchapova A.I., Kravtsova L.A. Cytogenetics of Wheat-rye Hybrids. Novosibirsk: Nauka Publ., 1990. (in Russian) Taketa S., Takeda K. Production and characterization of a complete set of wheat-wild barley (Hordeum vulgare ssp. spontaneum) chromosome addition lines. Breed Sci. 2001;51(3):199-206. DOI: 10.1270/jsbbs.51.199.
30. Trubacheeva N.V., Badaeva E.D., Osadchaya T.S., Pershina L.A. Use of H. vulgare EST markers, GISH and C-banding to study bread wheat–H. marinum subsp. gussoneanum (2n = 28) introgression lines. Cereal Res. Commun. 2019;47(4):593-603. DOI: 10.1556/0806.47.2019.37.