Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Problems with studying directional natural selection in humans

https://doi.org/10.18699/VJGB-23-79

Abstract

The review describes the main methods for assessing directional selection in human populations. These include bioinformatic analysis of DNA sequences via detection of linkage disequilibrium and of deviations from the random distribution of frequencies of genetic variants, demographic and anthropometric studies based on a search for a correlation between fertility and phenotypic traits, genome-wide association studies on fertility along with genetic loci and polygenic risk scores, and a comparison of allele frequencies between generations (in modern samples and in those obtained from burials). Each approach has its limitations and is applicable to different periods in the evolution of Homo sapiens. The main source of error in such studies is thought to be sample stratification, the small number of studies on nonwhite populations, the impossibility of a complete comparison of the associations found and functionally significant causative variants, and the difficulty with taking into account all nongenetic determinants of fertility in contemporary populations. The results obtained by various methods indicate that the direction of human adaptation to new food products has not changed during evolution since the Neolithic; many variants of immunity genes associated with inflammatory and autoimmune diseases in modern populations have undergone positive selection over the past 2–3 thousand years owing to the spread of bacterial and viral infections. For some genetic variants and polygenic traits, an alteration of the direction of natural selection in Europe has been documented, e. g., for those associated with an immune response and cognitive abilities. Examination of the correlation between fertility and educational attainment yields conflicting results. In modern populations, to a greater extent than previously, there is selection for variants of genes responsible for social adaptation and behavioral phenotypes. In particular, several articles have shown a positive correlation of fertility with polygenic risk scores of attention deficit/hyperactivity disorder.

About the Author

S. V. Mikhailova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Abdellaoui A., Hugh-Jones D., Yengo L., Kemper K.E., Nivard M.G., Veul L., Holtz Y., Zietsch B.P., Frayling T.M., Wray N.R., Yang J., Verweij K.J.H., Visscher P.M. Genetic correlates of social stratification in Great Britain. Nat. Hum. Behav. 2019;3(12):1332­1342. DOI: 10.1038/s41562-019-0757-5.

2. Abondio P., Cilli E., Luiselli D. Inferring signatures of positive selection in whole­genome sequencing data: an overview of haplotype­based methods. Genes. 2022;13(5):926. DOI: 10.3390/genes13050926.

3. Arkhangelskiy V.N., Shulgin S.G., Zinkina Yu.V. Reproductive behavior of Russian women as depending on their level of education. Vestnik Rossiyskogo Universiteta Druzhby Narodov. Seriya: Sotsiologiya = RUDN Journal of Sociology. 2020;20(3):546­559. DOI: 10.22363/2313-2272-2020-20-3-546-559. (in Russian)

4. Arkhangelskiy V.N., Rostovskaya T.K., Vasilieva E.N. Influence of the standard of living on the reproductive behavior of Russians: gender aspect. Zhenshchina v Rossiyskom Obshchestve = Woman in Russian Society. 2021;Spec.iss.:3-24. DOI: 10.21064/WinRS.2021.0.1. (in Russian)

5. Arner A.M., Grogan K.E., Grabowski M., Reyes­Centeno H., Perry G.H. Patterns of recent natural selection on genetic loci associated with sexually differentiated human body size and shape phenotypes. PLoS Genet. 2021;17(6):e1009562. DOI: 10.1371/journal.pgen.1009562.

6. Balbo N., Billari F.C., Mills M. Fertility in advanced societies: a review of research: La fécondité dans les sociétés avancées: un examen des recherches. Eur. J. Popul. 2013;29(1):1-38. DOI: 10.1007/s10680012­9277­y.

7. Barban N., Jansen R., de Vlaming R., Vaez A., Mandemakers J.J., Tropf F.C., Shen X., Wilson J.F., Chasman D.I., Nolte I.M., … Lee J.J., Benjamin D.J., Cesarini D., Koellinger P.D., den Hoed M., Snieder H., Mills M.C. Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nat. Genet. 2016;48(12): 1462-1472. DOI: 10.1038/ng.3698.

8. Beauchamp J.P. Genetic evidence for natural selection in humans in the contemporary United States. Proc. Natl. Acad. Sci. USA. 2016; 113(28):7774-7779. DOI: 10.1073/pnas.1600398113.

9. Boutwell B., Hinds D.; 23andMe Research Team; Tielbeek J., Ong K.K., Day F.R., Perry J.R.B. Replication and characterization of CADM2 and MSRA genes on human behavior. Heliyon. 2017;3(7):e00349. DOI: 10.1016/j.heliyon.2017.e00349.

10. Byars S.G., Ewbank D., Govindaraju D.R., Stearns S.C. Colloquium papers: natural selection in a contemporary human population. Proc. Natl. Acad. Sci. USA. 2010;107(Suppl.1):1787-1792. DOI: 10.1073/pnas.0906199106.

11. Charpin D., Gouitaa M. Why is the prevalence of allergic diseases increasing? A critical assessment of some classical risk factors. Mediators Inflamm. 2001;10(6):292-294. DOI: 10.1080/09629350152700920.

12. Cohen A., Dehejia R., Romanov D. Financial incentives and fertility. Rev. Econ. Stat. 2013;95(1):1-20. DOI: 10.1162/REST_a_00342.

13. Demontis D., Walters R.K., Martin J., Mattheisen M., Als T.D., Agerbo E., Baldursson G., Belliveau R., Bybjerg-Grauholm J., BækvadHansen M., … Werge T., Mors O., Mortensen P.B., Daly M.J., Faraone S.V., Børglum A.D., Neale B.M. Discovery of the first genome- wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 2019;51(1):63-75. DOI: 10.1038/s41588-018-0269-7.

14. Fieder M., Huber S. Contemporary selection pressures in modern societies? Which factors best explain variance in human reproduction and mating? Evol. Hum. Behav. 2022;43(1):16-25. DOI: 10.1016/j.evolhumbehav.2021.08.001.

15. Field Y., Boyle E.A., Telis N., Gao Z., Gaulton K.J., Golan D., Yengo L., Rocheleau G., Froguel P., McCarthy M.I., Pritchard J.K. Detection of human adaptation during the past 2000 years. Science. 2016;354(6313):760-764. DOI: 10.1126/science.aag0776.

16. Grossman S.R., Andersen K.G., Shlyakhter I., Tabrizi S., Winnicki S., Yen A., Park D.J., Griesemer D., Karlsson E.K., Wong S.H., Cabili M., Adegbola R.A., Bamezai R.N., Hill A.V., Vannberg F.O., Rinn J.L.; 1000 Genomes Project; Lander E.S., Schaffner S.F., Sabeti P.C. Identifying recent adaptations in large­scale genomic data. Cell. 2013;152(4):703-713. DOI: 10.1016/j.cell.2013.01.035.

17. Hugh-Jones D., Abdellaoui A. Human capital mediates natural selection in contemporary humans. Behav. Genet. 2022;52(4­5):205­234. DOI: 10.1007/s10519-022-10107-w.

18. Kerner G., Laval G., Patin E., Boisson­Dupuis S., Abel L., Casanova J.L., Quintana-Murci L. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2,000 years. Am. J. Hum. Genet. 2021;108(3):517-524. DOI: 10.1016/j.ajhg.2021.02.009.

19. Klunk J., Vilgalys T.P., Demeure C.E., Cheng X., Shiratori M., Madej J., Beau R., Elli D., Patino M.I., Redfern R., DeWitte S.N., Gamble J.A., Boldsen J.L., Carmichael A., Varlik N., Eaton K., Grenier J.C., Golding G.B., Devault A., Rouillard J.M., Yotova V., Sindeaux R., Ye C.J., Bikaran M., Dumaine A., Brinkworth J.F., Missiakas D., Rouleau G.A., Steinrücken M., Pizarro-Cerdá J., Poinar H.N., Barreiro L.B. Evolution of immune genes is associated with the Black Death. Nature. 2022;611(7935):312­319. DOI: 10.1038/s41586-022-05349-x.

20. Kong A., Frigge M.L., Thorleifsson G., Stefansson H., Young A.I., Zink F., Jonsdottir G.A., Okbay A., Sulem P., Masson G., Gudbjartsson D.F., Helgason A., Bjornsdottir G., Thorsteinsdottir U., Stefansson K. Selection against variants in the genome associated with educational attainment. Proc. Natl. Acad. Sci. USA. 2017;114(5): E727-E732. DOI: 10.1073/pnas.1612113114.

21. Kuijpers Y., Domínguez-Andrés J., Bakker O.B., Gupta M.K., Grasshoff M., Xu C.J., Joosten L.A.B., Bertranpetit J., Netea M.G., Li Y. Evolutionary trajectories of complex traits in European populations of modern humans. Front. Genet. 2022;13:833190. DOI: 10.3389/fgene.2022.833190.

22. Lewandowska M., Jędrychowska-Dańska K., Płoszaj T., Witas P., Zamerska A., Mańkowska-Pliszka H., Witas H.W. Searching for signals of recent natural selection in genes of the innate immune response – ancient DNA study. Infect. Genet. Evol. 2018;63:62­72. DOI: 10.1016/j.meegid.2018.05.008.

23. Marnetto D., Pankratov V., Mondal M., Montinaro F., Pärna K., Vallini L., Molinaro L., Saag L., Loog L., Montagnese S., Costa R.; Estonian Biobank Research Team; Metspalu M., Eriksson A., Pagani L. Ancestral genomic contributions to complex traits in contemporary Europeans. Curr. Biol. 2022;32(6):1412­1419.e3. DOI: 10.1016/j.cub.2022.01.046.

24. Mathieson I., Terhorst J. Direct detection of natural selection in Bronze Age Britain. Genome Res. 2022;32(11­12):2057­2067. DOI: 10.1101/gr.276862.122.

25. Mathieson I., Lazaridis I., Rohland N., Mallick S., Patterson N., Roodenberg S.A., Harney E., Stewardson K., Fernandes D., Novak M., Sirak K., Gamba C., Jones E.R., Llamas B., Dryomov S., Pickrell J., Arsuaga J.L., de Castro J.M., Carbonell E., Gerritsen F., Khokhlov A., Kuznetsov P., Lozano M., Meller H., Mochalov O., Moiseyev V., Guerra M.A., Roodenberg J., Vergès J.M., Krause J., Cooper A., Alt K.W., Brown D., Anthony D., Lalueza­Fox C., Haak W., Pinhasi R., Reich D. Genome­wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528(7583):499­503. DOI: 10.1038/nature16152.

26. Mathieson I., Day F.R., Barban N., Tropf F.C., Brazel D.M.; eQTLGen Consortium; BIOS Consortium; Vaez A., van Zuydam N., Bitarello B.D., … Zhao W., Zhao Y., Snieder H., den Hoed M., Ong K.K., Mills M.C., Perry J.R.B. Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus. Nat. Hum. Behav. 2023;7(5):790-801. DOI: 10.1038/s41562­023­01528­6.

27. Mikhailova S.V., Ivanoshchuk D.E., Yushkevich E.A., Bairqdar A., Anisimenko M.S., Shcherbakova L.V., Denisova D.V., Orlov P.S. Prevalence of common alleles of some stress resilience genes among adolescents born in different periods relative to the socioeconomic crisis of the 1990s in Russia. Curr. Issues Mol. Biol. 2022;45(1):5165. DOI: 10.3390/cimb45010004.

28. Mills M.C., Mathieson I. The challenge of detecting recent natural selection in human populations. Proc. Natl. Acad. Sci. USA. 2022; 119(15):e2203237119. DOI: 10.1073/pnas.2203237119.

29. Mitteroecker P., Huttegger S.M., Fischer B., Pavlicev M. Cliff-edge model of obstetric selection in humans. Proc. Natl. Acad. Sci. USA. 2016;113(51):14680-14685. DOI: 10.1073/pnas.1612410113.

30. Palamara P.F., Terhorst J., Song Y.S., Price A.L. High-throughput inference of pairwise coalescence times identifies signals of selection and enriched disease heritability. Nat. Genet. 2018;50(9):1311­1317. DOI: 10.1038/s41588-018-0177-x.

31. Pankratov V., Yunusbaeva M., Ryakhovsky S., Zarodniuk M.; Estonian Biobank Research Team; Yunusbayev B. Prioritizing autoimmunity risk variants for functional analyses by fine-mapping mutations under natural selection. Nat. Commun. 2022;13(1):7069. DOI: 10.1038/s41467-022-34461-9.

32. Raj T., Kuchroo M., Replogle J.M., Raychaudhuri S., Stranger B.E., De Jager P.L. Common risk alleles for inflammatory diseases are targets of recent positive selection. Am. J. Hum. Genet. 2013;92(4): 517-529. DOI: 10.1016/j.ajhg.2013.03.001.

33. Reeve C.L., Heeney M.D., Woodley of Menie M.A. A systematic review of the state of literature relating parental general cognitive ability and number of offspring. Pers. Individ. Differ. 2018;134:107118. DOI: 10.1016/j.paid.2018.05.036.

34. Saklayen M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018;20(2):12. DOI: 10.1007/s11906-0180812­z.

35. Sanjak J.S., Sidorenko J., Robinson M.R., Thornton K.R., Visscher P.M. Evidence of directional and stabilizing selection in contemporary humans. Proc. Natl. Acad. Sci. USA. 2018;115(1):151­156. DOI: 10.1073/pnas.1707227114.

36. Schork A.J., Peterson R.E., Dahl A., Cai N., Kendler K.S. Indirect paths from genetics to education. Nat. Genet. 2022;54(4):372­373. DOI: 10.1038/s41588-021-00999-5.

37. Sohail M., Maier R.M., Ganna A., Bloemendal A., Martin A.R., Turchin M.C., Chiang C.W., Hirschhorn J., Daly M.J., Patterson N., Neale B., Mathieson I., Reich D., Sunyaev S.R. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome­wide association studies. eLife. 2019;8:e39702. DOI: 10.7554/eLife.39702.

38. Song W., Shi Y., Wang W., Pan W., Qian W., Yu S., Zhao M., Lin G.N. A selection pressure landscape for 870 human polygenic traits. Nat. Hum. Behav. 2021;5(12):1731-1743. DOI: 10.1038/s41562021­01231­4.

39. Speidel L., Forest M., Shi S., Myers S.R. A method for genome­wide genealogy estimation for thousands of samples. Nat. Genet. 2019; 51(9):1321-1329. DOI: 10.1038/s41588-019-0484-x.

40. Suvorov A. Population numbers and reproductive health. Endocrinology. 2021;162(11):bqab154. DOI: 10.1210/endocr/bqab154.

41. Testa M.R. On the positive correlation between education and fertility intentions in Europe: individual­ and country­level evidence. Adv. Life Course Res. 2014;21:28-42. DOI: 10.1016/j.alcr.2014.01.005.

42. Tropf F.C., Stulp G., Barban N., Visscher P.M., Yang J., Snieder H., Mills M.C. Human fertility, molecular genetics, and natural selection in modern societies. PLoS One. 2015;10(6):e0126821. DOI: 10.1371/journal.pone.0126821.

43. Turner N., Robbins K. Association between county­level natality and income in the US, 2000–2020. JAMA Pediatr. 2023;177(2):198­202. DOI: 10.1001/jamapediatrics.2022.4814.

44. Wolf E., Sonenklar N., Schefft M., Haskell H., James J. Is there evidence of ADHD overdiagnosis in children? Am. Fam. Physician. 2023;107(3):292­296.

45. Wu Y., Furuya S., Wang Z., Nobles J.E., Fletcher J.M., Lu Q. GWAS on birth year infant mortality rates provides evidence of recent natural selection. Proc. Natl. Acad. Sci. USA. 2022;119(12):e2117312119. DOI: 10.1073/pnas.2117312119.

46. Yasumizu Y., Sakaue S., Konuma T., Suzuki K., Matsuda K., Murakami Y., Kubo M., Palamara P.F., Kamatani Y., Okada Y. Genomewide natural selection signatures are linked to genetic risk of modern phenotypes in the Japanese population. Mol. Biol. Evol. 2020; 37(5):1306-1316. DOI: 10.1093/molbev/msaa005.

47. Zeidan J., Fombonne E., Scorah J., Ibrahim A., Durkin M.S., Saxena S., Yusuf A., Shih A., Elsabbagh M. Global prevalence of autism: a systematic review update. Autism Res. 2022;15(5):778­790. DOI: 10.1002/aur.2696.


Review

Views: 569


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)