1. Akhtar W., de Jong J., Pindyurin A.V., Pagie L., Meuleman W., de Ridder J., Berns A., Wessels L.F.A., van Lohuizen M., van Steensel B. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell. 2013;154(4):914-927. https://doi.org/10.1016/j.cell.2013.07.018
2. Akhtar W., Pindyurin A.V., de Jong J., Pagie L., ten Hoeve J., Berns A., Wessels L.F.A., van Steensel B., van Lohuizen M. Using TRIP for genome-wide position effect analysis in cultured cells. Nat. Protoc. 2014;9(6):1255-1281. https://doi.org/10.1038/nprot.2014.072
3. Babenko V.N., Makunin I.V., Brusentsova I.V., Belyaeva E.S., Maksimov D.A., Belyakin S.N., Maroy P., Vasil′eva L.A., Zhimulev I.F. Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome. BMC Genomics. 2010;11: 318. https://doi.org/10.1186/1471-2164-11-318
4. Chen M., Licon K., Otsuka R., Pillus L., Ideker T. Decoupling epigenetic and genetic effects through systematic analysis of gene position. Cell Rep. 2013;3(1):128-137. https://doi.org/10.1016/j.celrep.2012.12.003
5. Chen Q., Luo W., Veach R.A., Hickman A.B., Wilson M.H., Dyda F. Structural basis of seamless excision and specific targeting by piggyBac transposase. Nat. Commun. 2020;11(1):3446. https://doi.org/10.1038/s41467-020-17128-1
6. Dahodwala H., Lee K.H. The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr. Opin. Biotechnol. 2019;60:128-137. https://doi.org/10.1016/j.copbio.2019.01.011
7. Ding S., Wu X., Li G., Han M., Zhuang Y., Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005;122(3):473-483. https://doi.org/10.1016/j.cell.2005.07.013
8. Elgin S.C.R., Reuter G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. Biol. 2013;5(8):a017780. https://doi.org/10.1101/cshperspect.a017780
9. FeichtingerJ., Hernández I., FischerC., Hanscho M., Auer N., Hackl M., Jadhav V., Baumann M., Krempl P.M., Schmidl C., Farlik M., Schuster M., Merkel A., Sommer A., Heath S., Rico D., Bock C., Thallinger G.G., Borth N. Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time. Biotechnol. Bioeng. 2016;113(10):2241-2253. https://doi.org/10.1002/bit.25990
10. Fraser M.J., Ciszczon T., Elick T., Bauser C. Precise excision of TTAAspecific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol. 1996;5(2):141-151. https://doi.org/10.1111/j.1365-2583.1996.tb00048.x
11. Galvan D.L., Nakazawa Y., Kaja A., Kettlun C., Cooper L.J.N., Rooney C.M., Wilson M.H. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. J. Immunother. 2009;32(8):837-844. https://doi.org/10.1097/CJI.0b013e3181b2914c
12. Gierman H.J., Indemans M.H.G., Koster J., Goetze S., Seppen J., Geerts D., van Driel R., Versteeg R. Domain-wide regulation of gene expression in the human genome. Genome Res. 2007;17(9):1286-1295. https://doi.org/10.1101/gr.6276007
13. Gisler S., Gonçalves J.P., Akhtar W., de Jong J., Pindyurin A.V., Wessels L.F.A., van Lohuizen M. Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency. Nat. Commun. 2019;10(1):1598. https://doi.org/10.1038/s41467-019-09551-w
14. Gupta K., Modi D., Jain R., Dandekar P. A stable CHO K1 cell line for producing recombinant monoclonal antibody against TNF-α. Mol. Biotechnol. 2021;63(9):828-839. https://doi.org/10.1007/s12033-021-00329-4
15. Huang X., Guo H., Tammana S., Jung Y.-C., Mellgren E., Bassi P., Cao Q., Tu Z.J., Kim Y.C., Ekker S.C., Wu X., Wang S.M., Zhou X. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol. Ther. 2010;18(10):1803-1813. https://doi.org/10.1038/mt.2010.141
16. Kim J.Y., Kim Y.-G., Lee G.M. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl. Microbiol. Biotechnol. 2012;93(3):917-930. https://doi.org/10.1007/s00253-011-3758-5
17. Lalonde M.-E., Durocher Y. Therapeutic glycoprotein production in mammalian cells. J. Biotechnol. 2017;251:128-140. https://doi.org/10.1016/j.jbiotec.2017.04.028
18. Lebedev M.O., Yarinich L.A., Ivankin A.V., Pindyurin A.V. Generation of barcoded plasmid libraries for massively parallel analysis of chromatin position effects. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(2):203-211. https://doi.org/10.18699/VJ19.483
19. Li M.A., Pettitt S.J., Eckert S., Ning Z., Rice S., Cadiñanos J., Yusa K., Conte N., Bradley A. The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol. Cell. Biol. 2013;33(7):1317-1330. https://doi.org/10.1128/MCB.00670-12
20. Orlova N.A., Kovnir S.V., Hodak J.A., Vorobiev I.I., Gabibov A.G., Skryabin K.G. Improved elongation factor-1 alpha-based vectors for stable high-level expression of heterologous proteins in Chinese hamster ovary cells. BMC Biotechnol. 2014;14:56. https://doi.org/10.1186/1472-6750-14-56
21. O’Shea J.P., Chou M.F., Quader S.A., Ryan J.K., Church G.M., Schwartz D. pLogo: a probabilistic approach to visualizing sequence motifs. Nat. Methods. 2013;10(12):1211-1212. https://doi.org/10.1038/nmeth.2646
22. Ritacco F.V., Wu Y., Khetan A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol. Prog. 2018; 34(6):1407-1426. https://doi.org/10.1002/btpr.2706
23. Ruf S., Symmons O., Uslu V.V., Dolle D., Hot C., Ettwiller L., Spitz F. Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nat. Genet. 2011;43(4): 379-386. https://doi.org/10.1038/ng.790
24. Running Deer J., Allison D.S. High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1α gene. Biotechnol. Prog. 2004;20(3):880-889. https://doi.org/10.1021/bp034383r
25. Stach C.S., McCann M.G., O′Brien C.M., Le T.S., Somia N., Chen X., Lee K., Fu H.Y., Daoutidis P., Zhao L., Hu W.S., Smanski M. Modeldriven engineering of N-linked glycosylation in Chinese hamster ovary cells. ACS Synth. Biol. 2019;8(11):2524-2535. https://doi.org/10.1021/acssynbio.9b00215
26. Wang X., Xu Z., Tian Z., Zhang X., Xu D., Li Q., Zhang J., Wang T. The EF-1α promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells. J. Cell. Mol. Med. 2017;21(11):3044-3054. https://doi.org/10.1111/jcmm.13216
27. Wilson M.H., Coates C.J., George A.L., Jr. PiggyBac transposon-mediated gene transfer in human cells. Mol. Ther. 2007;15(1):139-145. https://doi.org/10.1038/sj.mt.6300028
28. Xu W.-J., Lin Y., Mi C.-L., Pang J.-Y., Wang T.-Y. Progress in fed-batch culture for recombinant protein production in CHO cells. Appl. Microbiol. Biotechnol. 2023;107(4):1063-1075. https://doi.org/10.1007/s00253-022-12342-x