Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Analysis of the transcriptional activity of model piggyBac transgenes stably integrated into different loci of the genome of CHO cells in the absence of selection pressure

https://doi.org/10.18699/VJGB-23-105

Abstract

CHO cells are most commonly used for the synthesis of recombinant proteins in biopharmaceutical production. When stable producer cell lines are obtained, the locus of transgene integration into the genome has a great influence on the level of its expression. Therefore, the identification of genomic loci ensuring a high level of protein production is very important. Here, we used the TRIP assay to study the influence of the local chromatin environment on the activity of transgenes in CHO cells. For this purpose, reporter constructs encoding eGFP under the control of four promoters were stably integrated into the genome of CHO cells using the piggyBac transposon. Each individual transgene contained a unique tag, a DNA barcode, and the resulting polyclonal cell population was cultured for almost a month without any selection. Next, using the high-throughput sequencing, genomic localizations of barcodes, as well as their abundances in the population and transcriptional activities were identified. In total, ~640 transgenes more or less evenly distributed across all chromosomes of CHO cells were characterized. More than half of the transgenes were completely silent. The most active transgenes were identified to be inserted in gene promoters and 5’ UTRs. Transgenes carrying Chinese hamster full-length promoter of the EF-1α gene showed the highest activity. Transgenes with a truncated version of the same promoter and with the mouse PGK gene promoter were on average 10 and 19 times less active, respectively. In total, combinations of genomic loci of CHO cells and transgene promoters that together provide different levels of transcriptional activity of the model reporter construct were described.

About the Authors

L. A. Yarinich
Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. A. Ogienko
Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. V. Pindyurin
Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. S. Omelina
Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Akhtar W., de Jong J., Pindyurin A.V., Pagie L., Meuleman W., de Ridder J., Berns A., Wessels L.F.A., van Lohuizen M., van Steensel B. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell. 2013;154(4):914-927. DOI 10.1016/j.cell.2013.07.018

2. Akhtar W., Pindyurin A.V., de Jong J., Pagie L., ten Hoeve J., Berns A., Wessels L.F.A., van Steensel B., van Lohuizen M. Using TRIP for genome-wide position effect analysis in cultured cells. Nat. Protoc. 2014;9(6):1255-1281. DOI 10.1038/nprot.2014.072

3. Babenko V.N., Makunin I.V., Brusentsova I.V., Belyaeva E.S., Maksimov D.A., Belyakin S.N., Maroy P., Vasil′eva L.A., Zhimulev I.F. Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome. BMC Genomics. 2010;11: 318. DOI 10.1186/1471-2164-11-318

4. Chen M., Licon K., Otsuka R., Pillus L., Ideker T. Decoupling epigenetic and genetic effects through systematic analysis of gene position. Cell Rep. 2013;3(1):128-137. DOI 10.1016/j.celrep.2012.12.003

5. Chen Q., Luo W., Veach R.A., Hickman A.B., Wilson M.H., Dyda F. Structural basis of seamless excision and specific targeting by piggyBac transposase. Nat. Commun. 2020;11(1):3446. DOI 10.1038/s41467-020-17128-1

6. Dahodwala H., Lee K.H. The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr. Opin. Biotechnol. 2019;60:128-137. DOI 10.1016/j.copbio.2019.01.011

7. Ding S., Wu X., Li G., Han M., Zhuang Y., Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005;122(3):473-483. DOI 10.1016/j.cell.2005.07.013

8. Elgin S.C.R., Reuter G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. Biol. 2013;5(8):a017780. DOI 10.1101/cshperspect.a017780

9. FeichtingerJ., Hernández I., FischerC., Hanscho M., Auer N., Hackl M., Jadhav V., Baumann M., Krempl P.M., Schmidl C., Farlik M., Schuster M., Merkel A., Sommer A., Heath S., Rico D., Bock C., Thallinger G.G., Borth N. Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time. Biotechnol. Bioeng. 2016;113(10):2241-2253. DOI 10.1002/bit.25990

10. Fraser M.J., Ciszczon T., Elick T., Bauser C. Precise excision of TTAAspecific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol. 1996;5(2):141-151. DOI 10.1111/j.1365-2583.1996.tb00048.x

11. Galvan D.L., Nakazawa Y., Kaja A., Kettlun C., Cooper L.J.N., Rooney C.M., Wilson M.H. Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. J. Immunother. 2009;32(8):837-844. DOI 10.1097/CJI.0b013e3181b2914c

12. Gierman H.J., Indemans M.H.G., Koster J., Goetze S., Seppen J., Geerts D., van Driel R., Versteeg R. Domain-wide regulation of gene expression in the human genome. Genome Res. 2007;17(9):1286-1295. DOI 10.1101/gr.6276007

13. Gisler S., Gonçalves J.P., Akhtar W., de Jong J., Pindyurin A.V., Wessels L.F.A., van Lohuizen M. Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency. Nat. Commun. 2019;10(1):1598. DOI 10.1038/s41467-019-09551-w

14. Gupta K., Modi D., Jain R., Dandekar P. A stable CHO K1 cell line for producing recombinant monoclonal antibody against TNF-α. Mol. Biotechnol. 2021;63(9):828-839. DOI 10.1007/s12033-021-00329-4

15. Huang X., Guo H., Tammana S., Jung Y.-C., Mellgren E., Bassi P., Cao Q., Tu Z.J., Kim Y.C., Ekker S.C., Wu X., Wang S.M., Zhou X. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol. Ther. 2010;18(10):1803-1813. DOI 10.1038/mt.2010.141

16. Kim J.Y., Kim Y.-G., Lee G.M. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl. Microbiol. Biotechnol. 2012;93(3):917-930. DOI 10.1007/s00253-011-3758-5

17. Lalonde M.-E., Durocher Y. Therapeutic glycoprotein production in mammalian cells. J. Biotechnol. 2017;251:128-140. DOI 10.1016/j.jbiotec.2017.04.028

18. Lebedev M.O., Yarinich L.A., Ivankin A.V., Pindyurin A.V. Generation of barcoded plasmid libraries for massively parallel analysis of chromatin position effects. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(2):203-211. DOI 10.18699/VJ19.483

19. Li M.A., Pettitt S.J., Eckert S., Ning Z., Rice S., Cadiñanos J., Yusa K., Conte N., Bradley A. The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol. Cell. Biol. 2013;33(7):1317-1330. DOI 10.1128/MCB.00670-12

20. Orlova N.A., Kovnir S.V., Hodak J.A., Vorobiev I.I., Gabibov A.G., Skryabin K.G. Improved elongation factor-1 alpha-based vectors for stable high-level expression of heterologous proteins in Chinese hamster ovary cells. BMC Biotechnol. 2014;14:56. DOI 10.1186/1472-6750-14-56

21. O’Shea J.P., Chou M.F., Quader S.A., Ryan J.K., Church G.M., Schwartz D. pLogo: a probabilistic approach to visualizing sequence motifs. Nat. Methods. 2013;10(12):1211-1212. DOI 10.1038/nmeth.2646

22. Ritacco F.V., Wu Y., Khetan A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol. Prog. 2018; 34(6):1407-1426. DOI 10.1002/btpr.2706

23. Ruf S., Symmons O., Uslu V.V., Dolle D., Hot C., Ettwiller L., Spitz F. Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nat. Genet. 2011;43(4): 379-386. DOI 10.1038/ng.790

24. Running Deer J., Allison D.S. High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1α gene. Biotechnol. Prog. 2004;20(3):880-889. DOI 10.1021/bp034383r

25. Stach C.S., McCann M.G., O′Brien C.M., Le T.S., Somia N., Chen X., Lee K., Fu H.Y., Daoutidis P., Zhao L., Hu W.S., Smanski M. Modeldriven engineering of N-linked glycosylation in Chinese hamster ovary cells. ACS Synth. Biol. 2019;8(11):2524-2535. DOI 10.1021/acssynbio.9b00215

26. Wang X., Xu Z., Tian Z., Zhang X., Xu D., Li Q., Zhang J., Wang T. The EF-1α promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells. J. Cell. Mol. Med. 2017;21(11):3044-3054. DOI 10.1111/jcmm.13216

27. Wilson M.H., Coates C.J., George A.L., Jr. PiggyBac transposon-mediated gene transfer in human cells. Mol. Ther. 2007;15(1):139-145. DOI 10.1038/sj.mt.6300028

28. Xu W.-J., Lin Y., Mi C.-L., Pang J.-Y., Wang T.-Y. Progress in fed-batch culture for recombinant protein production in CHO cells. Appl. Microbiol. Biotechnol. 2023;107(4):1063-1075. DOI 10.1007/s00253-022-12342-x


Review

Views: 541


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)