1. Ahmad M., Jehangir I.A., Rizvan R., Dar S.A., Iqbal S., Wani S.H., Mehraj U., Hassan R. Phylogenetic relationship of oats (Avena sativa L.): A guide to conservation and utilisation of genetic resources. Int. J. Curr. Microbiol. App. Sci. 2020;9(11):831845. https://doi.org/10.20546/ijcmas.2020.911.101
2. Badaeva E.D., Shelukhina O., Diederichsen A., Loskutov I.G., Pukhalskiy V.A. Comparative cytogenetic analysis of Avena macrostachya and diploid Cgenome Avena species. Genome. 2010;53(2):125137. https://doi.org/10.1139/g09089
3. Baum B.R. Taxonomic studies in Avena abyssinica and A. vavilo viana, and related species. Can. J. Bot. 1971;49(12):22272232. https://doi.org/10.1139/b7131
4. Baum B.R. Avena septentrionalis, and the semispecies concept. Can. J. Bot. 1972;50(10):20632066. https://doi.org/10.1139/b72264
5. Baum B.R. Oats: wild and cultivated. A monograph of the genus Avena L. (Poaceae). Ottawa: Biosystematics Research Institute, 1977
6. Coffman F.A. Oat History, Identification and Classification. Washington: United States Department of Agriculture, 1977
7. Eickbush T.H., Eickbush D.G. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics. 2007;175(2):477485. https://doi.org/10.1534/genetics.107.071399
8. Fominaya A., Loarce Y., González J.M., Ferrer E. Cytogenetic evidence supports Avena insularis being closely related to hexaploid oats. PLoS One. 2021;16(10):e0257100. https://doi.org/10.1371/journal.pone. 0257100
9. Fu Y.B., Williams D.J. AFLP variation in 25 Avena species. Theor. Appl. Genet. 2008;117:333342. https://doi.org/10.1007/s0012200807783
10. Fu Y.B. Oat evolution revealed in the maternal lineages of 25 Avena species. Sci. Rep. 2018;8(1):4252. https://doi.org/10.1038/s41598018224784
11. Gnutikov A.A., Nosov N.N., Loskutov I.G., Blinova E.V., Rodionov A.V. Molecular phylogenetic study of rare weed species of the genus Avena L. Problemy Botaniki Yuzhnoy Sibiri i Mongolii = Problems of Botany of South Siberia and Mongolia. 2021;20(1): 108111. https://doi.org/10.14258/pbssm.2021022 (in Russian)
12. Gnutikov A.A., Nosov N.N., Loskutov I.G., Blinova E.V., Shneyer V.S., Probatova N.S., Rodionov A.V. New insights into the genomic structure of Avena L.: comparison of the divergence of Agenome and one Cgenome oat species. Plants. 2022a;11(9):1103. https://doi.org/10.3390/plants11091103
13. Gnutikov A.A., Nosov N.N., Loskutov I.G., Machs E.M., Blinova E.V., Probatova N.S., Langdon T., Rodionov A.V. New insights into the genomic structure of the oats (Avena L., Poaceae): intragenomic polymorphism of ITS1 sequences of rare endemic species Avena bruhnsiana Gruner and its relationship to other species with C genomes. Euphytica. 2022b;218:3. https://doi.org/10.1007/s1068102102956z
14. Gnutikov A.A., Nosov N.N., Loskutov E.M., Blinova E.V., Ro dionov A.V. Study of phylogenetic relationships between wild and cultivated oat species (Avena L.). Problemy Botaniki Yuzhnoy Sibiri i Mongolii = Problems of Botany of South Siberia and Mongolia. 2022c;21(2):1620. https://doi.org/10.14258/pbssm.2022046 (in Russian)
15. Gnutikov A.A., Nosov N.N., Loskutov I.G., Blinova E.V., Shneyer V.S., Rodionov A.V. Origin of wild polyploid Avena species inferred from polymorphism of the ITS1 rDNA in their genomes. Diversity. 2023; 15(6):717. https://doi.org/10.3390/d15060717
16. Holden J.H.W. 28 Oats. Avena spp. (Gramineae-Aveneae). In: Simmonds N.W. (Ed.). Evolution of Crop Plants. London & New York: Longman, 1979;8690
17. Holub J. Bemerkungen zur taxonomie der gattung Helictotrichon Bess. In: Klášterský I. (Ed.). Philipp Maxmilian Opiz und seine Bedeutung für die Pflanzentaxonomie. Prague: Verlag der Tschechoslowakischen Akademie der Wissenschaften, 1958;101133
18. Jellen E.N., Beard J.L. Geographical distribution of a chromosome 7C and 17 intergenomic translocation in cultivated oat. Crop Sci. 2000; 40(1):256263. https://doi.org/10.2135/cropsci2000.401256x
19. Jiang W., Jiang C., Yuan W., Zhang M., Fang Z., Li Y., Li G., Jia J., Yang Z. A universal karyotypic system for hexaploid and diploid Avena species brings oat cytogenetics into the genomics era. BMC Plant Biol. 2021;21(1):213. https://doi.org/10.1186/s12870021029993
20. Kamal N., Tsardakas Renhuldt N., Bentzer J., Gundlach H., Haberer G., Juhász A., Lux T., Bos U., TyeDin J.A., Lang D., van Gessel N., Reski R., Fu Y.B., Spégel P., Ceplitis A., Himmelbach A., Waters A.J., Bekele W.A., Colgrave M.L., Hansson M., Stein N., Mayer K.F.X., Jellen E.N., Maughan P.J., Tinker N.A., Mascher M., Olsson O., Spannagl M., Sirijovski N. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature. 2022;606(7912):113119. https://doi.org/10.1038/s4158602204732y
21. Ladizinsky G. Biological species and wild genetic resources in Avena. In: Proceedings 3rd International Oat Conference, Lund, Sweden, 48 July 1988. Printed by grants from Svalöv A.B. (Sweden), 1989; 7686
22. Ladizinsky G. Studies in Oat Evolution: A Man’s Life with Avena. Heidelberg, Germany: Springer, 2012
23. Latta R.G., Bekele W.A., Wight C.P., Tinker N.A. Comparative linkage mapping of diploid, tetraploid, and hexaploid Avena species suggests extensive chromosome rearrangement in ancestral diploids. Sci. Rep. 2019;9(1):12298. https://doi.org/10.1038/s41598019486397
24. Li C., Rossnagel B., Scoles G. The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor. Appl. Genet. 2000;101:12591268. https://doi.org/10.1007/s001220051605
25. Linares C., Gonzalez J., Ferrer E., Fominaya A. The use of double flurescence in situ hybridization to physical map the position of 5S rDNA genes in relation to the chromosomal location of 18S5.8S26S rDNA and a C genome specific DNA sequence in the genus Avena. Genome. 1996;39(3):535542. https://doi.org/10.1139/g96068
26. Linares C., Ferrer E., Fominaya A. Discrimination of the closely related A and D genomes of the hexaploid Avena sativa L. Proc. Natl. Acad. Sci. USA. 1998;95(21):1245012455. https://doi.org/10.1073/pnas.95. 21.12450
27. Liu Q., Li X., Li M., Xu W., Schwarzacher T., HeslopHarrison J.S. Comparative chloroplast genome analyses of Avena: insights into evolutionary dynamics and phylogeny. BMC Plant Biol. 2020; 20(1):406. https://doi.org/10.1186/s1287002002621y
28. Loskutov I.G. Vavilov and his Institute. A History of the World Collection of Plant Resources in Russia. Rome: IPGRI, 1999
29. Loskutov I.G. Oat (Avena L.). Distribution, Taxonomy, Evolution, and Breeding Value. St. Petersburg: VIR, 2007 (in Russian)
30. Loskutov I.G. The History of the World Collection of Plant Genetic Resources in Russia. St. Petersburg: VIR, 2009 (in Russian)
31. Loskutov I.G., Abramova L.I. Morphological and karyological study of wild Avena L. species. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2006;162:108113 (in Russian)
32. Loskutov I.G., Rines H.W. Avena. In: Kole C. (Ed.). Wild Crop Relatives: Genomic and Breeding Resources. Heidelberg; Berlin: Springer, 2011;109183. https://doi.org/10.1007/9783642142284_3
33. Loskutov I.G., Gnutikov A.A., Blinova E.V., Rodionov A.V. The origin and resource potential of wild and cultivated species of the genus of oats (Avena L.). Russ. J. Genet. 2021;57(6):642661. https://doi.org/10.1134/ S1022795421060065
34. Malzew A.I. Wild and cultivated oats (Sectio Euavena Griseb). Suppl. 38. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1930 (in Russian)
35. Mordvinkina A.I. Parent material for oat breeding in the USSR. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1960;32(2):57100 (in Russian)
36. Nan J., Ling Y., An J., Wang T., Chai M., Fu J., Wang G., Yang C., Yang Y., Han B. Genome resequencing reveals independent domestication and breeding improvement of naked oat. GigaScience. 2023;12:giad061. https://doi.org/10.1093/gigascience/giad061
37. Nikoloudakis N., Katsiotis A. The origin of the Cgenome and cytoplasm of Avena polyploids. Theor. Appl. Genet. 2008;117(2):273281. https://doi.org/10.1007/s0012200807729
38. Nikoloudakis N., Skaracis G., Katsiotis A. Evolutionary in sights inferred by molecular analysis of the ITS15.8SITS2 and IGS Avena sp. sequences. Mol. Phylogenet. Evol. 2008;46(1):102115. https://doi.org/10.1016/j.ympev.2007.10.007
39. Peng Y.Y., Wei Y.M., Baum B.R., Zheng Y.L. Molecular diversity of 5S rDNA gene and genomic relationships in genus Avena (Poaceae: Aveneae). Genome. 2008;51(2):137154. https://doi.org/10.1139/G07111
40. Peng Y.Y., Wei Y.M., Baum B.R., Jiang Q.T., Lan X.J., Dai S.F., Zheng Y.L. Phylogenetic investigation of Avena diploid species and the maternal genome donor of Avena polyploids. Taxon. 2010;59(5): 14721482. https://doi.org/10.1002/tax.595012
41. Peng Y., Zhou P., Zhao J., Li J., Lai S., Tinker N.A., Liao S., Yan H. Phylogenetic relationships in the genus Avena based on the nuclear Pgk1 gene. PLoS One. 2018;13(11):e0200047. https://doi.org/10.1371/journal. pone.0200047
42. Peng Y., Yan H., Guo L., Deng C., Wang C., Wang Y., Kang L., Zho P., Yu K., Dong X., Liu X., Sun Z., Peng Y., Zhao J., Deng D., Xu Y., Li Y., Jiang Q., Li Y., Wei L., Wang J., Ma J., Hao M., Li W., Kang H., Peng Z., Liu D., Jia J., Zheng Y., Ma T., Wei Y., Lu F., Ren C. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat. Genet. 2022;54(8):12481258. https://doi.org/10.1038/s41588022011277
43. Rajhathy T. The allopolyploid model in Avena. In: Stadler Genetics Symposia. Vol. 3. Columbia: University of Missouri, 1971;7187
44. Rajhathy T., Thomas H. Cytogenetics of oats (Avena L.). Ottawa: Genetics Society of Canada, 1974
45. Rodionov A.V., Tyupa N.B., Kim E.S., Machs E.M., Loskutov I.G. Genomic configuration of the autotetraploid oat species Avena macrostachya inferred from comparative analysis of ITS1 and ITS2 sequences: on the oat karyotype evolution during the early events of the Avena species divergence. Russ. J. Genet. 2005;41(5):518528. https://doi.org/10.1007/s111770050120y
46. Rodionov A.V., Amosova A.V., Krainova L.M., Machs E.M., Mikhailova Yu.V., Gnutikov A.A., Muravenko O.V., Loskutov I.G. Phenomenon of multiple mutations in the 35S rRNA genes of the C subgenome of polyploid Avena L. species. Russ. J. Genet. 2020;56(6): 674683. https://doi.org/10.31857/S0016675820060090
47. Rodionova N.A., Soldatov V.N., Merezhko V.E., Yarosh N.P., Kobylyansky V.D. Flora of Cultivated Plants. Vol. 2. Pt. 3. Oat. Moscow: Kolos Publ., 1994 (in Russian)
48. Rodrigues J., Viegas W., Silva M. 45S rDNA external transcribed spacer organization reveals new phylogenetic relationships in Avena genus. PLoS One. 2017;12(4):e0176170. https://doi.org/10.1371/journal.pone.0176170
49. Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma. 2018;127(1):141150. https://doi.org/10.1007/s0041201706518
50. Thomas H. 29 Oats. Avena spp. (Gramineae-Aveneae). In: Smartt J., Simmonds N.W. (Eds.). Evolution of Crop Plants. Harlow: Longman Scientific and Technical, 1995;132137
51. Tinker N.A., Wight C.P., Bekele W.A., Yan W., Jellen E.N., Renhuldt N.T., Sirijovski N., Lux T., Spannagl M., Mascher M. Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Commun. Biol. 2022;5(1):474. https://doi.org/10.1038/s42003022032565
52. Tomas D., Rodrigues J., Varela A., Veloso M.M., Viegas W., Silva M. Use of repetitive sequences for molecular and cytogenetic characterization of Avena species from Portugal. Int. J. Mol. Sci. 2016;17(2): 203. https://doi.org/10.3390/ijms17020203
53. Tyupa N.B., Kim E.S., Rodionov A.V., Loskutov I.G. On the origin polyploids in the Avena L. genus: a molecularphylogenetic investigation. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2009;165: 1320 (in Russian)
54. Vavilov N.I. The Centers of Origin of Cultivated Plants. In: Trudy po Prikladnoy Botanike i Selektsii = Proceedings on Applied Botany and Plant Breeding. 1926;16(2):248. (in Russian)
55. Vavilov N.I. The Linnean species as a system. Report of proceeding of V International Botanical Congress. Cambridge. 1931;213216
56. Vavilov N.I. The doctrine of the origin of cultivated plants after Darwin. (Report at the Darwin symposium of the Academy of Sciences of the USSR, November 28, 1939). Sovetskaya Nauka = Soviet Science. 1940;2:5575 (in Russian)
57. Vavilov N.I. The origin, variation, immunity and breeding of cultivated plants. New York: Ronald Press, 1951
58. Vavilov N.I. Origin and Geography of Cultivated Plants. Cambridge: Cambridge University Press, 1992
59. Vavilov N.I. Five Continents. Rome: IPGRI/VIR, 1997
60. Yan H., Bekele W.A., Wight Ch.P., Peng Y., Langdon T., Latta R.G., Fu Y.B., Diederichsen A., Howarth C.J., Jellen E.N., Boyle B., Wei Y., Tinker N.A. Highdensity marker profiling confirms ancestral genomes of Avena species and identifies Dgenome chromosomes of hexaploid oat. Theor. Appl. Genet. 2016;129(11):21332149. https://doi.org/10.1007/s0012201627627
61. Yan H., Ren Z., Deng D., Yang K., Yang C., Zhou P., Wight C.P., Ren C., Peng Y. New evidence confirming the CD genomic constitutions of the tetraploid Avena species in the section Pachycarpa Baum. PLoS One. 2021;16(1):e0240703. https://doi.org/10.1371/journal.pone.0240703
62. Zhou X., Jellen E.N., Murphy J.P. Progenitor germplasm of domisticated hexaploid oat. Crop Sci. 1999;39(4):12081214. https://doi.org/10.2135/cropsci1999.0011183X003900040042x
63. Zukovskij P.M. Cultivated Plants and Their Wild Relatives. London: C’wealth Agric. Bureaux, 1962