Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Сравнительная оценка копийности сателлитных повторов в геноме видов Triticeae

https://doi.org/10.18699/VJGB-23-109

Аннотация

Сателлитные повторы составляют значительную часть генома Пшеницевых, играя важную роль в видообразовании, что делает их ценным инструментом для изучения этих процессов. Особое место среди злаков занимают виды Pseudoroegneria – наиболее вероятные доноры St-генома у многих полиплоидов. Цель настоя щего исследования состояла в сравнительной оценке копийности сателлитных повторов в геномах Triticeae. С по мощью количественной полимеразной цепной реакции в реальном времени была установлена копийность 22 сателлитных повторов, выявленных в полногеномных нуклеотидных последовательностях видов Pseudoroegneria, и одного ранее опубликованного повтора, обнаруженного в геноме Aegilops crassa. Объектами анализа стали семь видов Pseudoroegneria, три вида Thinopyrum, Elymus pendulinus, Ae. tauschii, Secale cereale и Triticum aestivum. По уровню копийности и коэффициентам вариации нами выделено три группы повторов: с низким уровнем вариативности между видами (среднекопийный CL82), средним уровнем вариативности (низко- и среднекопийные CL67, CL3, CL185, CL119, CL192, CL89, CL115, CL95, CL168) и с высокими значениями коэффициента вариации (CL190, CL184, CL300, CL128, CL207, CL69, CL220, CL101, CL262, CL186, CL134, CL251, CL244). Повтор CL69 показал специфическую высокую копийность для всех видов Pseudoroegneria, CL101 – у Pseudoroegneria и Th. junceum, CL244 – у Th. bessarabicum, CL184 – у P. cognata и S. cereale. У P. cognata более высокую копийность, по сравнению с остальными видами, проявили повторы CL95, CL128, CL168, CL186, CL207, CL300; у P. kosaninii – CL3, CL95, CL115, CL119, CL190, CL220, CL207 и CL300; у P. libanotica – CL89; у P. geniculata – CL134. Проведенные нами оценка копийности сателлитных повторов, найденных в St-геноме, и анализ специфичности их амплификации между видами могут пополнить арсенал молекулярно-генетических и цитогенетических маркеров, используемых для эволю ционных, филогенетических и популяционных исследований представителей трибы Пшеницевых.

Об авторах

П. Ю. Крупин
Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии
Россия

Москва



А. И. Юркина
Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии
Россия

Москва



А. А. Кочешкова
Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии
Россия

Москва



Д. С. Ульянов
Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии
Россия

Москва



Г. И. Карлов
Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии
Россия

Москва



М. Г. Дивашук
Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии
Россия

Москва



Список литературы

1. Agafonov A.V., Shabanova E.V., Emtseva M.V., Asbaganov S.V., Dorogina O.V. Phylogenetic relationships among different morphotypes of StY­genomic species Elymus ciliaris and E. amurensis (Poaceae) as a unified macroevolutional complex. Botanica Pacifica: a Journal of Plant Science and Conservation. 2021;10(1):19­28. DOI 10.17581/bp.2021.10101

2. Aguilar M., Prieto P. Telomeres and subtelomeres dynamics in the context of early chromosome interactions during meiosis and their implications in plant breeding. Front. Plant Sci. 2021;12:672489. DOI 10.3389/fpls.2021.672489

3. Al­Saghir M.G. Taxonomy and phylogeny in Triticeae: a historical review and current status. Adv. Plants Agr. Res. 2016;3(5):139­143. DOI 10.15406/apar.2016.03.00108

4. Anamthawat­Jónsson K., Heslop­Harrison J.S. Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol. Gen. Genet. 1993;240(2):151­158. DOI 10.1007/BF00277052

5. Anamthawat­Jónsson K., Wenke T., Thórsson A.T., Sveinsson S., Zakrzewski F., Schmidt T. Evolutionary diversification of satellite DNA sequences from Leymus (Poaceae: Triticeae). Genome. 2009; 52(4):381­390. DOI 10.1139/g09­013

6. Badaeva E.D., Salina E.A. Genome structure and chromosome analysis in plants. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):1017­1043 (in Russian)

7. Baker L., Grewal S., Yang C.Y., Hubbart-Edwards S., Scholefield D., Ashling S., Burridge A.J., Przewieslik­Allen A.M., Wilkinson P.A., King I.P., King J. Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. Theor. Appl. Genet. 2020;133(7):2213­2226. DOI 10.1007/s00122­020­03591­3

8. Baruch O., Kashkush K. Analysis of copy­number variation, insertional polymorphism, and methylation status of the tiniest class I (TRIM) and class II (MITE) transposable element families in various rice strains. Plant Cell Rep. 2012;31(5):885­893. DOI 10.1007/s00299011­1209­5

9. Belyayev A., Raskina O. Chromosome evolution in marginal populations of Aegilops speltoides: causes and consequences. Ann. Bot. 2013;111(4):531­538. DOI 10.1093/aob/mct023

10. Belyayev A., Josefiova J., Jandova M., Kalendar R., Krak K., Mandsk B. Natural history of a satellite DNA family: from the ancestral genome component to species-specific sequences, concerted and non­concerted evolution. Int. J. Mol. Sci. 2019;20(5):1201. DOI 10.3390/ijms20051201

11. Chen C., Zheng Z., Wu D., Tan L., Yang C., Liu S., Lu J., Cheng Y., Sha L., Wang Y., Kang H., Fan X., Zhou Y., Zhang C., Zhang H. Morphological, cytological, and molecular evidences for natural hybridization between Roegneria stricta and Roegneria turczaninovii (Triticeae: Poaceae). Ecol. Evol. 2022;12(1):e8517. DOI 10.1002/ece3.8517

12. Chen C., Han Y., Xiao H., Zou B., Wu D., Sha L., Yang C., Liu S., Cheng Y., Wang Y., Kang H., Fan X., Zhou Y., Zhang T., Zhang H. Chromosome-specific painting in Thinopyrum species using bulked oligonucleotides. Theor. Appl. Genet. 2023;136(8):177. DOI 10.1007/s00122­023­04423­w

13. Chen J., Tang Y., Yao L., Wu H., Tu X., Zhuang L., Qi Z. Cytological and molecular characterization of Thinopyrum bessarabicum chromosomes and structural rearrangements introgressed in wheat. Mol. Breed. 2019;39:146. DOI 10.1007/s11032­019­1054­8

14. Chen N., Chen W.J., Yan H., Wang Y., Kang H.Y., Zhang H.Q., Zhou Y.H., Sun G.L., Sha L.N., Fan X. Evolutionary patterns of plastome uncover diploid­polyploid maternal relationships in Triticeae. Mol. Phylogenet. Evol. 2020;149:106838. DOI 10.1016/j.ympev.2020.106838

15. Chen Q., Conner R., Laroche A., Ahmad F. Molecular cytogenetic evidence for a high level of chromosome pairing among different genomes in Triticum aestivum–Thinopyrum intermedium hybrids. Theor. Appl. Genet . 2001;102:847­852. DOI 10.1007/s001220000 496

16. Comai L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 2005;6(11):836­846. DOI 10.1038/nrg1711. PMID: 16304599

17. Cui Y., Zhang Y., Qi J., Wang H., Wang R.R.C., Bao Y., Li X. Identification of chromosomes in Thinopyrum intermedium and wheat Th. intermedium amphiploids based on multiplex oligonucleotide probes. Genome. 2018;61(7):515­521. DOI 10.1139/gen­2018­0019

18. Dai Y., Huang S., Sun G., Li H., Chen S., Gao Y., Chen J. Origins and chromosome differentiation of Thinopyrum elongatum revealed by

19. PepC and Pgk1 genes and ND­FISH. Genome. 2021;64(10):901­913. DOI 10.1139/gen­2019­0176

20. Divashuk M.G., Khuat T.M.L., Kroupin P.Y., Kirov I.V., Romanov D.V., Kiseleva A.V., Khrustaleva L.I., Alexeev D.G., Zelenin A.S., Klimushina M.V., Razumova O.V., Karlov G.I. Variation in copy number of Ty3/Gypsy centromeric retrotransposons in the genomes of Thinopyrum intermedium and its diploid progenitors. PLoS One. 2016;11:e0154241. DOI 10.1371/journal.pone.0154241

21. Divashuk M.G., Karlov G.I., Kroupin P.Y. Copy number variation of transposable elements in Thinopyrum intermedium and its diploid relative species. Plants. 2019;9(1):15. DOI 10.3390/plants9010015

22. Divashuk M.G., Nikitina E.A., Sokolova V.M., Yurkina A.I., Kocheshkova A.A., Razumova O.V., Karlov G.I., Kroupin P.Yu. qPCR as a selective tool for cytogenetics. Plants. 2022;12(1):80. DOI 10.3390/plants12010080

23. Dobryakova K.S. Allopolyploidy and origin of genomes in the Elymus L. species (a review). Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 2017;178(4):127­134. DOI 10.30901/2227­8834­2017­4­127­134 (in Russian)

24. Du P., Zhuang L., Wang Y., Yuan L., Wang Q., Wang D., Dawadondup, Tan L., Shen J., Xu H., Zhao H., Chu C., Qi Z. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome. 2017;60(2):93­103. DOI 10.1139/gen­2016­0095

25. Dvořák J. Triticeae genome structure and evolution. In: Muehlbauer G., Feuillet C. (Eds.). Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models. Vol. 7. New York: Springer, 2009;685­711. DOI 10.1007/978­0­387­77489­3_23

26. Evtushenko E.V., Levitsky V.G., Elisafenko E.A., Gunbin K.V., Belousov A.I., Šafář J., Doležel J., Vershinin A.V. The expansion of heterochromatin blocks in rye reflects the co-amplification of tandem repeats and adjacent transposable elements. BMC Genomics. 2016;17:337. DOI 10.1186/s12864­016­2667­5

27. Feliciello I., Akrap I., Brajković J., Zlatar I., Ugarković D. Satellite DNA as a driver of population divergence in the red flour beetle Tribolium castaneum. Genome Biol. Evol. 2015;7(1):228­239. DOI 10.1093/gbe/evu280

28. Gao Z., Bian J., Lu F., Jiao Y., He H. Triticeae crop genome biology: an endless frontier. Front. Plant Sci. 2023;14:1222681. DOI 10.3389/fpls.2023.1222681

29. Garrido­Ramos M.A. The genomics of plant satellite DNA. In: Ugarković Ð. (Ed.). Satellite DNAs in Physiology and Evolution. Progress in Molecular and Subcellular Biology. Vol. 60. Cham: Springer, 2021;103­143. DOI 10.1007/978­3­030­74889­0_5

30. Grewal S., Yang C., Edwards S.H., Scholefield D., Ashling S., Burridge A.J., King I.P., King J. Characterisation of Thinopyrum bessarabicum chromosomes through genome­wide introgressions into wheat. Theor. Appl. Genet. 2018;131(2):389­406. DOI 10.1007/s00122­017­3009­y

31. Guo X., Shi Q., Liu Y., Su H., Zhang J., Wang M., Wang C., Wang J., Zhang K., Fu S., Hu X., Jing D., Wang Z., Li J., Zhang P., Liu C., Han F. Systemic development of wheat–Thinopyrum elongatum translocation lines and their deployment in wheat breeding for Fusarium head blight resistance. Plant J. 2023;114(6):1475­1489. DOI 10.1111/tpj.16190

32. Han H., Liu W., Lu Y., Zhang J., Yang X., Li X., Hu Z., Li L. Isolation and application of P genome-specific DNA sequences of Agropyron Gaertn. in Triticeae. Planta. 2017;245(2):425­437. DOI 10.1007/s00425­016­2616­1

33. Harpke D., Peterson A. Quantitative PCR revealed a minority of ITS copies to be functional in Mammillaria (Cactaceae). Int. J. Plant Sci. 2007;168(8):1157­1160. DOI 10.1086/520729

34. Hodkinson T.R. Evolution and taxonomy of the grasses (Poaceae): A model family for the study of species­rich groups. Annu. Plant Rev. Online. 2018;1(1):255­294. DOI 10.1002/9781119312994.apr0622

35. Hudakova S., Michalek W., Presting G.G., ten Hoopen R., dos Santos K., Jasencakova Z., Schubert I. Sequence organization of barley centromeres. Nucleic Acids Res. 2001;29(24):5029­5035. DOI 10.1093/nar/29.24.5029

36. Husband B.C., Baldwin S.J., Suda J. The Incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Greilhuber J., Dolezel J., Wendel J. (Eds.). Plant Genome Diversity. Vol. 2. Vienna: Springer, 2013;255­276. DOI 10.1007/978­3­7091­1160­4_16

37. Jakob S.S., Blattner F.R. Two extinct diploid progenitors were involved in allopolyploid formation in the Hordeum murinum (Poaceae: Triticeae) taxon complex. Mol. Phylogenet. Evol. 2010;55(2):650­659. DOI 10.1016/j.ympev.2009.10.021

38. Kalendar R., Raskina O., Belyayev A., Schulman A.H. Long tandem arrays of Cassandra retroelements and their role in genome dynamics in plants. Int. J. Mol. Sci. 2020;21(8):2931. DOI 10.3390/ijms21082931

39. Kishii M., Nagaki K., Tsujimoto H., Sasakuma T. Exclusive localization of tandem repetitive sequences in subtelomeric heterochromatin regions of Leymus racemosus (Poaceae, Triticeae). Chromosome Res. 1999;7(7):519­529. DOI 10.1023/a:1009285311247

40. Komuro S., Endo R., Shikata K., Kato A. Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome. 2013;56(3):131­137. DOI 10.1139/gen­2013­0003

41. Kroupin P.Y., Kuznetsova V.M., Nikitina E.A., Martirosyan Y.T., Karlov G.I., Divashuk M.G. Development of new cytogenetic markers for Thinopyrum ponticum (Podp.) Z.­W. Liu & R.­C. Wang. Comp. Cytogenet. 2019a;13(3):231­243. DOI 10.3897/CompCytogen.v13i3.36112

42. Kroupin P., Kuznetsova V., Romanov D., Kocheshkova A., Karlov G., Dang T.X., Khuat T.M.L., Kirov I., Alexandrov O., Polkhovskiy A., Razumova O., Divashuk M. Pipeline for the rapid development of cytogenetic markers using genomic data of related species. Genes. 2019b;10(2):113. DOI 10.3390/genes10020113

43. Kroupin P.Y., Badaeva E.D., Sokolova V.M., Chikida N.N., Belousova M.K., Surzhikov S.A., Nikitina E.A., Kocheshkova A.A., Ulya nov D.S., Ermolaev A.S., Khuat T.M.L., Razumova O.V., Yurki na A.I., Karlov G.I., Divashuk M.G. Aegilops crassa Boiss. repeatome characterized using lowcoverage NGS as a source of new FISH markers: application in phylogenetic studies of the Triticeae. Front. Plant Sci. 2022;13:980764. DOI 10.3389/fpls.2022.980764

44. Kroupin P.Y., Ulyanov D.S., Karlov G.I., Divashuk M.G. The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae. Chromosoma. 2023;132(2):65­88. DOI 10.1007/s00412­023­00789­4

45. Kruppa K., Molnar-Lang M. Simultaneous visualization of different genomes (J, JSt and St) in a Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid (Poaceae) and in its parental species by multicolour genomic in situ hybridization (mcGISH). Comp. Cytogenet. 2016;10(2):283­293. DOI 10.3897/CompCytogen.v10i2.7305

46. Lang T., Li G., Wang H., Yu Z., Chen Q., Yang E., Fu S., Tang Z., Yang Z. Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta. 2019a; 249(3):663­675. DOI 10.1007/s00425­018­3033­4

47. Lang T., Li G., Yu Z., Ma J., Chen Q., Yang E., Yang Z. Genome­wide distribution of novel Ta­3A1 mini­satellite repeats and its use for chromosome identification in wheat and related species. Agronomy. 2019b;9(2):60. DOI 10.3390/agronomy9020060

48. Lei Y.X., Liu J., Fan X., Sha L.N., Wang Y., Kang H.­Y., Zhou Y.H., Zhang H.Q. Phylogeny and maternal donor of Roegneria and its affinitive genera (Poaceae: Triticeae) based on sequence data for two chloroplast DNA regions (ndhF and trnH­psbA). J. Syst. Evol. 2018;56(2):105­119. DOI 10.1111/jse.12291

49. Li G., Wang H., Lang T., Li J., La S., Yang E., Yang Z. New molecular markers and cytogenetic probes enable chromosome identification of wheat­Thinopyrum intermedium introgression lines for improving protein and gluten contents. Planta. 2016;244(4):865­876. DOI 10.1007/s00425­016­2554­y

50. Li L.F., Zhang Z.­B., Wang Z.­H., Li N., Sha Y., Wang X.­F., Ding N., Li Y., Zhao J., Wu Y., Gong L., Mafessoni F., Levy A.A., Liu B. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Mol. Plant. 2022;15(3):488­503. DOI 10.1016/j.molp.2021.12.019

51. Linc G., Gaál E., Molnár I., Icsó D., Badaeva E., Molnár-Láng M. Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS One. 2017;12(3): e0173623. DOI 10.1371/journal.pone.0173623

52. Liu L., Luo Q., Teng W., Li B., Li H., Li Y., Li Z., Zheng Q. Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF­seq technology. Planta. 2018;247(5): 1099­1108. DOI 10.1007/s00425­018­2845­6

53. Liu Q.­L., Liu L., Ge S., Fu L.­P., Bai S.­Q., Lv X., Wang Q.­K., Chen W., Wang F.­Y., Wang L.­H., Yan X.­B., Lu B.­R. Endo­allopolyploidy of autopolyploids and recurrent hybridization – A possible mechanism to explain the unresolved Y­genome donor in polyploid Elymus species (Triticeae: Poaceae). J. Syst. Evol. 2020;60(2): 344­360. DOI 10.1111/jse.12659

54. Liu Y., Song W., Song A., Wu C., Ding J., Yu X., Song J., Liu M., Yang X., Jiang C., Zhao H., Li X., Cui L., Li H., Zhang Y. Hybridization domestication and molecular cytogenetic characterization of new germplasm of Thinopyrum intermedium with smGISH at Northeastern China. Res. Square. 2023. DOI 10.21203/rs.3.rs­2795377/v1

55. Liu Z., Li D., Zhang X. Genetic relationships among five basic genomes St, E, A, B and D in Triticeae revealed by genomic southern and in situ hybridization. J. Integr. Plant Biol. 2007;49(7):1080­1086. DOI 10.1111/j.1672­9072.2007.00462.x

56. Liu Z., Yue W., Li D., Wang R.R., Kong X., Lu K., Wang G., Dong Y., Jin W., Zhang X. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma. 2008;117(5): 445­456. DOI 10.1007/s00412­008­0161­9

57. Lucia V., Martinez­Ortega M.M., Rico E., Anamthawat­Jonsson K. Discovery of the genus Pseudoroegneria (Triticeae, Poaceae) in the Western Mediterranean on exploring the generic boundaries of Elymus . J. Syst. Evol. 2019;57(1):23­41. DOI 10.1111/jse.12426

58. Luo P.G., Luo H.Y., Chang Z.J., Zhang H.Y., Zhang M., Ren Z.L. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet. 2009;118(6):1059­1064. DOI 10.1007/s00122­009­0962­0

59. Luo X., Tinker N.A., Fan X., Zhang H., Sha L., Kang H., Ding C., Liu J., Zhang L., Yang R., Zhou Y. Phylogeny and maternal donor of Kengyilia species (Poaceae: Triticeae) based on three cpDNA (matK, rbcL and trnH­psbA) sequences. Biochem. Syst. Ecol. 2012; 44:61­69. DOI 10.1016/j.bse.2012.04.004

60. Luo Y.C., Chen C., Wu D.D., Lu J.L., Sha L.N., Fan X., Cheng Y.R., Kang H.Y., Wang Y., Zhou Y.H., Zhang C.B., Zhang H.Q. Confirmation of natural hybridization between Kengyilia (StStYYPP) and Campeiostachys (StStYYHH) (Triticeae: Poaceae) based on morphological and molecular cytogenetic analyses. Cytogenet. Genome Res. 2022;162(6):334­344. DOI 10.1159/000527781

61. Mach J. Polyploid pairing problems: how centromere repeat divergence helps wheat sort it all out. Plant Cell. 2019;31(9):1938­1939. DOI 10.1105/tpc.19.00622

62. Mahelka V., Kopecký D., Paštová L. On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae). BMC Evol. Biol. 2011;11:127. DOI 10.1186/1471­2148­11­127

63. Navajas­Perez R., Paterson A.H. Patterns of tandem repetition in plant whole genome assemblies. Mol. Genet. Genomics. 2009;281(6): 579­590. DOI 10.1007/s00438­009­0433­y

64. Navajas­Pérez R., Quesada del Bosque M.E., Garrido­Ramos M.A. Effect of location, organization, and repeat­copy number in satelliteDNA evolution. Mol. Genet. Genomics. 2009;282(4):395­406. DOI 10.1007/s00438­009­0472­4

65. Pereira C.M., Stoffel T.J.R., Callegari-Jacques S.M., Hua-Van A., Capy P., Loreto E.L.S. The somatic mobilization of transposable element mariner­Mos1 during the Drosophila lifespan and its biological consequences. Gene. 2018;679:65­72. DOI 10.1016/j.gene.2018.08.079

66. Pestsova E., Goncharov N., Salina E. Elimination of a tandem repeat of telomeric heterochromatin during the evolution of wheat. Theor. Appl. Genet. 1998;97:1380­1386. DOI 10.1007/s001220051032

67. Pollak Y., Zelinger E., Raskina O. Repetitive DNA in the architecture, repatterning, and diversification of the genome of Aegilops speltoides Tausch (Poaceae, Triticeae). Front. Plant Sci. 2018;9:1779. DOI 10.3389/fpls.2018.01779

68. Pös O., Radvanszky J., Styk J., Pös Z., Buglyó G., Kajsik M., Budis J., Nagy B., Szemes T. Copy number variation: methods and clinical applications. Appl. Sci. 2021;11(2):819. DOI 10.3390/app11020819

69. Rabanus­Wallace M.T., Stein N. Chapter 2 – Progress in Sequencing of Triticeae Genomes and Future Uses. In: Miedaner T., Korzun V. (Eds.). Applications of Genetic and Genomic Research in Cer eals. Woodhead Publishing, 2019;19­47. DOI 10.1016/B978­0­08102163­7.00002­8

70. Raskina O., Brodsky L., Belyayev A. Tandem repeats on an eco­geographical scale: outcomes from the genome of Aegilops speltoides. Chromosome Res. 2011;19(5):607­623. DOI 10.1007/s10577­0119220­9

71. Rodionov A.V. Tandem duplications, eupolyploidy and secondary diploidization – genetic mechanisms of plant speciation and progressive evolution. Turczaninowia. 2022;25(4):87­121. DOI 10.14258/turczaninowia.25.4.12 (in Russian)

72. Rodionov A.V., Dobryakova K.S., Nosov N.N., Gnutikov A.A., Punina E.O., Kriukov A.A., Shneyer V.S. Polymorphism of ITS sequences in 35S rRNA genes in Elymus dahuricus aggregate species: two cryptic species? Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(3):287­295. DOI 10.18699/VJ19.493

73. Rogers S., Bendich A. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 1985;5(2):69­76. DOI 10.1007/BF00020088

74. Ruban A.S., Badaeva E.D. Evolution of the S­genomes in Triticum­ Aegilops alliance: evidences from chromosome analysis. Front. Plant Sci. 2018;9:1756. DOI 10.3389/fpls.2018.01756

75. Said M., Hřibová E., Danilova T.V., Karafiátová M., Čížková J., Friebe B., Doležel J., Gill B.S., Vrána J. The Agropyron cristatum karyotype, chromosome structure and cross­genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single­gene probes. Theor. Appl. Genet. 2018;131:2213­ 2227. DOI 10.1007/s00122­018­3148­9

76. Salina E.A., Adonina I.G. Cytogenetics in the study of chromosomal rearrangement during wheat evolution and breeding. In: Larramendy M.L., Soloneski S. (Eds.). Cytogenetics – Past, Present and Further Perspectives. London: IntechOpen, 2019;1­18. DOI 10.5772/intechopen.80486

77. Salina E.A., Adonina I.G., Badaeva E.D., Kroupin P.Y., Stasyuk A.I., Leonova I.N., Shishkina A.A., Divashuk M.G., Starikova E.V., Khuat T.M.L., Syukov V.V., Karlov G.I. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica. 2015;204:91­101. DOI 10.1007/s10681­014­1344­5

78. Šatović-Vukšić E., Plohl M. Satellite DNAs – from localized to highly dispersed genome components. Genes. 2023;14(3):742. DOI 10.3390/genes14030742

79. Sha L.N., Liang X., Tang Y., Xu J.Q., Chen W.J., Cheng Y.R., Wu D.D., Zhang Y., Wang Y., Kang H.Y., Zhang H.Q., Zhou Y.H., Shen Y.H., Fan X. Evolutionary patterns of plastome resolve multiple origins of the Ns­containing polyploid species in Triticeae. Mol. Phylogenet. Evol. 2022;175:107591. DOI 10.1016/j.ympev.2022.107591

80. Shams I., Raskina O. Intraspecific and intraorganismal copy number dynamics of retrotransposons and tandem repeat in Aegilops speltoides Tausch (Poaceae, Triticeae). Protoplasma. 2018;255(4):1023­1038. DOI 10.1007/s00709­018­1212­6

81. Sharma S., Raina S.N. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet. Genome Res. 2005;109(1­3):15­26. DOI 10.1159/000082377

82. Shcherban A.B. Repetitive DNA sequences in plant genomes. Russ. J. Genet. Appl. Res. 2015;5:159­167. DOI 10.1134/S2079059715030168

83. Shi Q., Guo X., Su H., Zhang Y., Hu Z., Zhang J., Han F. Autoploid origin and rapid diploidization of the tetraploid Thinopyrum elongatum revealed by genome differentiation and chromosome pairing in meiosis. Plant J. 2023;113(3):536­545. DOI 10.1111/tpj.16066

84. Su H., Liu Y., Liu C., Shi Q., Huang Y., Han F. Centromere satellite repeats have undergone rapid changes in polyploid wheat subgenomes. Plant Cell. 2019;31(9):2035­2051. DOI 10.1105/tpc.19.00133

85. Tan L., Zhang H.­Q., Chen W.­H., Deng M.­Q., Sha L.­N., Fan X., Kang H.­Y., Wang Y., Wu D.­D., Zhou Y.­H. Genome composition and taxonomic revision of Elymus purpuraristatus and Roegneria calcicola (Poaceae: Triticeae) based on cytogenetic and phylogenetic analyses. Biol. J. Linn. Soc. 2021;196(2):242­255. DOI 10.1093/botlinnean/boaa103

86. Tang S., Tang Z., Qiu L., Yang Z., Li G., Lang T., Zhu W., Zhang J., Fu S. Developing new oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND­FISH. Front. Plant Sci. 2018;9:1104. DOI 10.3389/fpls.2018.01104

87. Tao X., Liu B., Dou Q. The Kengyiliahirsuta karyotype polymorphisms as revealed by FISH with tandem repeats and single­gene probes. Comp. Cytogenet. 2021;15(4):375­392. DOI 10.3897/compcytogen.v15.i4.71525

88. Thakur J., Packiaraj J., Henikoff S. Sequence, chromatin and evolution of satellite DNA. Int. J. Mol. Sci. 2021;22(9):4309. DOI 10.3390/ijms22094309

89. Vershinin A., Svitashev S., Gummesson P.O., Salomon B., von Bothmer R., Bryngelsson T. Characterization of a family of tandemly repeated DNA sequences in Triticeae. Theor. Appl. Genet. 1994; 89(2­3):217­225. DOI 10.1007/BF00225145

90. Vershinin A.V., Elisafenko E.A., Evtushenko E.V. Genetic redundancy in rye shows in a variety of ways. Plants. 2023;12(2):282. DOI 10.3390/plants12020282

91. Wang L., Shi Q., Su H., Wang Y., Sha L., Fan X., Kang H., Zhang H., Zhou Y. St2­80: a new FISH marker for St genome and genome analysis in Triticeae. Genome. 2017;60(7):553­563. DOI 10.1139/gen­2016­0228

92. Wang Q., Xiang J., Gao A., Yang X., Liu W., Li X., Li L. Analysis of chromosomal structural polymorphisms in the St, P, and Y genomes of Triticeae (Poaceae). Genome. 2010;53(3):241­249. DOI 10.1139/g09­098

93. Wang R.R.C., Lu B. Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses. J. Syst. Evol. 2014;52(6):697­705. DOI 10.1111/jse.12084

94. Wang R.R.C., Larson S.R., Jensen K.B., Bushman B.S., DeHaan L.R., Wang S., Yan X. Genome evolution of intermediate wheatgrass as revealed by EST­SSR markers developed from its three progenitor diploid species. Genome. 2015;58(2):63­70. DOI 10.1139/gen2014­0186

95. Wang S., Wang C., Wang Y., Wang Y., Chen C., Ji W. Molecular cytogenetic identification of two wheat–Thinopyrum ponticum substitution lines conferring stripe rust resistance. Mol. Breed. 2019; 39(143):1­11. DOI 10.1007/s11032­019­1053­9

96. Wu D., Zhu X., Tan L., Zhang H., Sha L., Fan X., Wang Y., Kang H., Lu J., Zhou Y. Characterization of each St and Y genome chromosome of Roegneria grandis based on newly developed FISH mar kers. Cytogenet. Genome Res. 2021;161(3­4):213­222. DOI 10.1159/000515623

97. Wu D., Yang N., Xiang Q., Zhu M., Fang Z., Zheng W., Lu J., Sha L., Fan X., Cheng Y., Wang Y., Kang H., Zhang H., Zhou Y. Pseudorogneria libanotica intraspecific genetic polymorphism revealed by fluorescence in situ hybridization with newly identified tandem repeats and wheat single­copy gene probes. Int. J. Mol. Sci. 2022; 23(23):14818. DOI 10.3390/ijms232314818

98. Wu D.­D., Liu X.­Y., Yu Z.­H., Tan L., Lu J.­L., Cheng Y.­R., Sha L.­ N., Fan X., Kang H.­Y., Wang Y., Zhou Y.­H., Zhang C.­B., Zhang H.­ Q. Recent natural hybridization in Elymus and Campeiostachys of Triticeae: evidence from morphological, cytological and molecular analyses. Biol. J. Linn. Soc. 2023a;201(4):428­442. DOI 10.1093/botlinnean/boac057

99. Wu D., Zhai X., Chen C., Yang X., Cheng S., Sha L., Cheng Y., Fan X., Kang H., Wang Y., Liu D., Zhou Y., Zhang H. A chromosome level genome assembly of Pseudoroegneria libanotica reveals a key Kcs gene involves in the cuticular wax elongation for drought resistance. Authorea. 2023b. DOI 10.22541/au.168484360.02472399/v1

100. Yan C., Sun G., Sun D. Distinct origin of the Y and St genome in Elymus species: evidence from the analysis of a large sample of St ge­ nome species using two nuclear genes. PLoS One. 2011;6(10): e26853. DOI 10.1371/journal.pone.0026853

101. Yang Z.J., Li G.­R., Feng J., Jiang H.R., Ren Z.L. Molecular cytogenetic characterization and disease resistance observation of wheatDasypyrum breviaristatum partial amphiploid and its derivatives. Hereditas. 2005;142(2005):80­85. DOI 10.1111/j.1601­5223.2005.01918.x

102. Zeng J., Fan X., Sha L.N., Kang H.Y., Zhang H.Q., Liu J., Wang X.L., Yang R.W., Zhou Y.H. Nucleotide polymorphism pattern and multiple maternal origin in Thinopyrum intermedium inferred by trnHpsbA sequences. Biol. Plant. 2012;56:254­260. DOI 10.1007/s10535­012­0084­4

103. Zhang J., Zhang J., Liu W., Wu X., Yang X., Li X., Lu Y., Li L. An intercalary translocation from Agropyron cristatum 6P chromosome into common wheat confers enhanced kernel number per spike. Planta. 2016;244(4):853­864. DOI 10.1007/s00425­016­2550­2

104. Zhang Y., Zhang J., Huang L., Gao A., Zhang J., Yang X., Liu W., Li X., Li L. A high­density genetic map for P genome of Agropyron Gaertn. based on specific-locus amplified fragment sequencing (SLAF-seq). Planta. 2015;242(6):1335­1347. DOI 10.1007/s00425­015­2372­7


Рецензия

Просмотров: 461


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)