Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Реконструкция и анализ регуляторной генной сети функционирования клеточной стенки листьев Arabidopsis thaliana L. при ответе на водный дефицит

https://doi.org/10.18699/VJGB-23-118

Аннотация

Растительная клеточная стенка представляет собой внешний компартмент растительной клетки, который во многом обеспечивает физический барьер и запуск сигнальных каскадов при действии био- и абиотических стрессоров. Засуха негативно влияет как на рост, так и развитие растений. Белки клеточной стенки (БКС) играют существенную роль в ответе растений на водный дефицит. Механизмы адаптации клеточной стенки к потере воды могут быть использованы для выявления важных генетических факторов, определяющих устойчивость растений к засухе, и предоставляют ценные данные о биомаркерах для дальнейшей селекции, направленной на повышение урожайности культурных растений. С помощью ANDSystem реконструирована генная сеть, позволяющая описывать регуляцию БКС в условиях ограничения полива. Анализ генной сети совместно с анализом транскриптомных данных позволил провести приоритизацию транскрипционных факторов (ТФ) по их обогащенности регулируемыми дифференциально экспрессирующимися генами. В результате были рассчитаны веса, являющиеся индикаторами ассоциации ТФ с водным дефицитом. По значениям весов отобраны восемь наиболее значимых ТФ. Наибольшим приоритетом обладал ТФ GBF3. Приоритизация БКС проведена по критерию суммирования весов транскрипционных факторов, регулирующих эти гены. К наиболее приоритетным БКС отнесены ген AT5G03350, кодирующий лектин-подобный белок; AT4G20860, кодирующий фермент берберинового моста BBE-like 22 (berberine bridge enzyme-like 22), необходимый для окисления продуктов распада целлюлозы, и AT4G37800, кодирующий ксилоглюкан эндотрансгликозилазу/гидролазу 7.

Об авторах

А. Р. Волянская
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



Е. А. Антропова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



У. С. Зубаирова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



П. С. Деменков
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Курчатовский геномный центр ИЦиГ СО РАН
Россия

Новосибирск



А. С. Вензель
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Курчатовский геномный центр ИЦиГ СО РАН
Россия

Новосибирск



Ю. Л. Орлов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Первый Московский государственный медицинский университет им. И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский Университет); Российский университет дружбы народов имени Патриса Лумумбы
Россия

Новосибирск

Москва



А. А. Макарова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Т. В. Иванисенко
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Курчатовский геномный центр ИЦиГ СО РАН
Россия

Новосибирск



Т. А. Горшкова
Казанский институт биохимии и биофизики – обособленное структурное подразделение Федерального исследовательского центра «Казанский научный центр Российской академии наук»
Россия

Казань



А. Р. Агълямова
Казанский институт биохимии и биофизики – обособленное структурное подразделение Федерального исследовательского центра «Казанский научный центр Российской академии наук»
Россия

Казань



Н. А. Колчанов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



М. Чен
Колледж наук о жизни, Чжэцзянский университет науки и техники
Китай

Ханчжоу



В. А. Иванисенко
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет; Курчатовский геномный центр ИЦиГ СО РАН
Россия

Новосибирск



Список литературы

1. Antropova E.A., Khlebodarova T.M., Demenkov P.S., Venzel A.S., Ivanisenko N.V., Gavrilenko A.D., Ivanisenko T.V., Adamovskaya A.V., Revva P.M., Lavrik I.N., Ivanisenko V.A. Computer analysis of regulation of hepatocarcinoma marker genes hypermethylated by HCV proteins. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(8):733742. DOI 10.18699/VJGB-22-89 (in Russian)

2. Armijo G., Salinas P., Monteoliva M.I., Seguel A., García C., VillarroelCandia E., Song W., van der Krol A.R., Álvarez M.E., Holuigue L. A salicylic acid-induced lectin-like protein plays a positive role in the effector-triggered immunity response of Arabidopsis thaliana to Pseudomonas syringae Avr-Rpm1. Mol. Plant Microbe Interact. 2013;26(12):1395-406. DOI 10.1094/MPMI-02-13-0044-R

3. Biswas S., Mondal R., Srivastava A., Trivedi M., Singh S.K., Mishra Y. In silico characterization, molecular phylogeny, and expression profiling of genes encoding legume lectin-like proteins under various abiotic stresses in Arabidopsis thaliana. BMC Genomics. 2022; 23(1):480. DOI 10.1186/s12864-022-08708-0

4. Burton R.A., Gidley M.J., Fincher G.B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 2010; 6(10):724-732. DOI 10.1038/nchembio.439

5. Cai H., Xu Y., Yan K., Zhang S., Yang G., Wu C., Zheng C., Huang J. BREVIPEDICELLUS positively regulates salt-stress tolerance in Arabidopsis thaliana. Int. J. Mol. Sci. 2023;24(2):1054. DOI 10.3390/ijms24021054

6. Choi H., Hong J., Ha J., Kang J., Kim S.Y. ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 2000;275(3):1723-1730. DOI 10.1074/jbc.275.3.1723

7. Demenkov P.S., Oshchepkova Е.А., Demenkov P.S., Ivanisenko T.V., Ivanisenko V.A. Prioritization of biological processes based on the reconstruction and analysis of associative gene networks describing the response of plants to adverse environmental factors. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(5):580-592. DOI 10.18699/VJ21.065 (in Russian)

8. Ding Y., Lapko H., Ndamukong I., Xia Y., Al-Abdallat A., Lalithambika S., Sadder M., Saleh A., Fromm M., Riethoven J.J., Lu G., Avramov Z. The Arabidopsis chromatin modifier ATX1, the myotubularin-like AtMTM, and the response to drought; a view from the other end of the pathway. Plant Signal. Behav. 2009;4(11):1049-1058. DOI 10.4161/psb.4.11.10103

9. Ezquer I., Salameh I., Colombo L., Kalaitzis P. Plant cell walls tackling climate change: biotechnological strategies to improve crop adaptations and photosynthesis in response to global warming. Plants. 2020;9(2):212. DOI 10.3390/plants9020212

10. Fang L., Su L., Sun X., Li X., Sun M., Karungo S.K., Fang S., Chu J., Li S., Xin H. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J. Exp. Bot. 2016;67(9):2829-2845. DOI 10.1093/jxb/erw122

11. Fujita Y., Fujita M., Shinozaki K., Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 2011;124(4):509-525. DOI 10.1007/s10265011-0412-3

12. Gautier L., Cope L., Bolstad B.M., Irizarry R.A. affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004; 20(3):307-315. DOI 10.1093/bioinformatics/btg405

13. Gentleman R.C., Carey V.J., Bates D.M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y., Gentry J., Hornik K., Hothorn T., Huber W., Iacus S., Irizzary R., Leisch F., Li C., Maechler M., Rossini A.J., Sawitzki G., Smith C., Tierney L., Yang J., Zhang J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80. DOI 10.1186/gb-2004-5-10-r80

14. Ghanbari Moheb Seraj R., Tohidfar M., Azimzadeh Irani M., Esmaeilzadeh-Salestani K., Moradian T., Ahmadikhah A., Behnamian M. Metabolomics analysis of milk thistle lipids to identify droughttolerant genes. Sci. Rep. 2022;12(1):12827. DOI 10.1038/s41598-022-16887-9

15. Gigon A., Matos A.R., Laffray D., Zuily-Fodil Y., Pham-Thi A.T. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann. Bot. 2004;94(3):345-351. DOI 10.1093/aob/mch150

16. Gonçalves L.P., Boscariol Camargo R.L., Takita M.A., Machado M.A., Dos Soares Filho W.S., Costa M.G.C. Rootstock-induced molecular responses associated with drought tolerance in sweet orange as revealed by RNA-Seq. BMC Genomics. 2019;20(1):110. DOI 10.1186/s12864-019-5481-z

17. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(Suppl. 2):S2. DOI 10.1186/1752-0509-9-S2-S2

18. Ivanisenko T.V., Saik O.V., Demenkov P.S., Khlestkin V.K., Khlestkina E.K., Kolchanov N.A., Ivanisenko V.A. The SOLANUM TUBEROSUM knowledge base: the section on molecular-genetic regulation of metabolic pathways. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(1): 8-17. DOI 10.18699/VJ18.325 (in Russian)

19. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019; 20(Suppl. 1):34. DOI 10.1186/s12859-018-2567-6

20. Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(Suppl. 11):228. DOI 10.1186/s12859-020-03557-8

21. Ivanisenko T.V., Demenkov P.S., Kolchanov N.A., Ivanisenko V.A. The new version of the ANDDigest tool with improved ai-based short names recognition. Int. J. Mol. Sci. 2022a;23(23):14934. DOI 10.3390/ijms232314934

22. Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Y.I., Voevoda S.M. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARSCoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022b;12(1):19977. DOI 10.1038/s41598-022-24170-0

23. Jamet E., Albenne C., Boudart G., Irshad M., Canut H., Pont-Lezica R. Recent advances in plant cell wall proteomics. Proteomics. 2008; 8(4):893-908. DOI 10.1002/pmic.200700938

24. Javadi S.M., Shobbar Z.-S., Ebrahimi A., Shahbazi M. New insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysis. J. Genet. Eng. Biotechnol. 2021;19(1):2. DOI 10.1186/s43141-020-00104-z

25. Jia Y., Niu Y., Zhao H., Wang Z., Gao C., Wang C., Chen S., Wang Y. Hierarchical transcription factor and regulatory network for drought response in Betula platyphylla. Hortic. Res. 2022;9:uhac040. DOI 10.1093/hr/uhac040

26. Joshi R., Wani S.H., Singh B., Bohra A., Dar Z.A., Lone A.A., Pareek A., Singla-Pareek S.L. Transcription factors and plants response to drought stress: current understanding and future directions. Front. Plant Sci. 2016;7:1029. DOI 10.3389/fpls.2016.01029

27. Kohorn B.D., Kobayashi M., Johansen S., Riese J., Huang L.F., Koch K., Fu S., Dotson A., Byers N. An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J. 2006;46(2):307-316. DOI 10.1111/j.1365-313X.2006.02695.x

28. Kohorn B.D., Kohorn S.L. The cell wall-associated kinases, WAKs, as pectin receptors. Front. Plant Sci. 2012;3:88. DOI 10.3389/fpls.2012.00088

29. Kühn K., Yin G., Duncan O., Law S.R., Kubiszewski-Jakubiak S., Kaur P., Meyer E., Wang Y., Colas C., Giraud E., Narsai R., Whelan J. Decreasing electron flux through the cytochrome and/or alternative respiratory pathways triggers common and distinct cellular responses dependent on growth conditions. Plant Physiol. 2014; 167(1):228-2250. DOI 10.1104/pp.114.249946

30. Le Gall H., Philippe F., Domon J.M., Gillet F., Pelloux J., Rayon C. Cell wall metabolism in response to abiotic stress. Plants. 2015;4(1): 112-166. DOI 10.3390/plants4010112

31. Lee O.R., Kim S.J., Kim H.J., Hong J.K., Ryu S.B., Lee S.H., Ganguly А., Сho H.-T. Phospholipase A2 is required for PIN-FORMED protein trafficking to the plasma membrane in the Arabidopsis root. Plant Cell. 2010;22(6):1812-1825. DOI 10.1105/tpc.110.074211

32. Lee S.B., Go Y.S., Bae H.J., Park J.H., Cho S.H., Cho H.J., Lee D.S., Park O.K., Hwang I., Suh M.C. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol. 2009;150(1):42-54. DOI 10.1104/pp.109.137745

33. Li Z., Li B., Zhao Y., Zhao D. Cloning and characterization of the DIR1 promoter from Eucommia ulmoides Oliv and its response to hormonal and abiotic stress. Plant Cell, Tissue Organ Cult. 2021;146: 313-322. DOI 10.1007/s11240-021-02070-x

34. Liu B., Wang X., Li K., Cai Z. Spatially resolved metabolomics and lipidomics reveal salinity and drought-tolerant mechanisms of cottonseeds. J. Agric. Food Chem. 2021;69(28):8028-8037. DOI 10.1021/acs.jafc.1c01598

35. Locci F., Benedetti M., Pontiggia D., Citterico M., Caprari C., Mattei B., Cervone F., De Lorenzo G. An Arabidopsis berberine bridge enzyme-like protein specifically oxidizes cellulose oligomers and plays a role in immunity. Plant J. 2019;98(3):540-554. DOI 10.1111/tpj.14237

36. Lu G., Paul A.L., McCarty D.R., Ferl R.J. Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh? Plant Cell. 1996;8(5):847-857. DOI 10.1105/tpc.8.5.847

37. Mariani M.E., Fidelio G.D. Secretory phospholipases A2 in plants. Front. Plant Sci. 2019;10:861. DOI 10.3389/fpls.2019.00861

38. Martinez D.E., Borniego M.L., Battchikova N., Aro E.M., Tyystjärvi E., Guiamét J.J. SASP, a Senescence-Associated Subtilisin Protease, is involved in reproductive development and determination of silique number in Arabidopsis. J. Exp. Bot. 2015;66(1):161-174. DOI 10.1093/jxb/eru409

39. Nazipova A., Gorshkov O., Eneyskaya E., Petrova N., Kulminskaya A., Gorshkova T., Kozlova L. Forgotten actors: glycoside hydrolases during elongation growth of maize primary root. Front Plant Sci. 2022;10(12):802424. DOI 10.3389/fpls.2021.802424

40. Noman M., Jameel A., Qiang W.D., Ahmad N., Liu W.C., Wang F.W., Li H.Y. Overexpression of GmCAMTA12 enhanced drought tolerance in Arabidopsis and Soybean. Int. J. Mol. Sci. 2019;20(19): 4849. DOI 10.3390/ijms20194849

41. Novaković L., Guo T., Bacic A., Sampathkumar A., Johnson K. Hitting the wall-sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants. 2018;7(4):89. DOI 10.3390/plants704008

42. Paniagua C., Bilkova A., Jackson P., Dabravolski S., Riber W., Didi V., Houser J., Gigli-Bisceglia N., Wimmerova M., Budínská E., Hamann T., Hejatko J. Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. J. Exp. Bot. 2017;68(13):3287-3301. DOI 10.1093/jxb/erx141

43. Perera I.Y., Hung C.Y., Moore C.D., Stevenson-Paulik J., Boss W.F. Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. Plant Cell. 2008;20(10):2876-2893. DOI 10.1105/tpc.108.061374

44. Ramegowda V., Gill U.S., Sivalingam P.N., Gupta A., Gupta C., Govind G., Nataraja K.N., Pereira A., Udayakumar M., Mysore K.S., Senthil-Kumar M. GBF3 transcription factor imparts drought tole rance in Arabidopsis thaliana. Sci. Rep. 2017;7(1):9148. DOI 10.1038/s41598-017-09542-1

45. Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. DOI 10.1093/nar/gkv007

46. Rose J.K., Braam J., Fry S.C., Nishitani K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol. 2002;43(12):1421-1435. DOI 10.1093/pcp/pcf171

47. Saik O.V., Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. Interactome of the hepatitis C virus: Literature mining with ANDSystem. Virus Res. 2016;218:40-48. DOI 10.1016/j.virusres.2015.12.003

48. Saik O.V., Demenkov P.S., Ivanisenko T.V., Kolchanov N.A., Ivanisenko V.A. Development of methods for automatic extraction of know ledge from texts of scientific publications for the creation of a knowledge base Solanum Tuberosum. Agricultural Biol. 2017; 52(1):63-74. DOI 10.15389/agrobiology.2017.1.63eng

49. Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Goncharova I.A., Dosenko V.E., Zolotareva O.I., Hofestaedt R., Lavrik I.N., Rogaev E.I. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Med. Genomics. 2018a;11(1):61-76. DOI 10.1186/s12920-018-0331-4

50. Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Dosenko V.E., Zolotareva O.I., Choynzonov E.L., Hofestaedt R., Ivanisenko V.A. Search for new candidate genes involved in the comorbidity of asthma and hypertension based on automatic analysis of scientific literature. J. Integr. Bioinform. 2018b;15(4):20180054. DOI 10.1515/jib-2018-0054

51. Saik O.V., Nimaev V.V., Usmonov D.B., Demenkov P.S., Ivanisenko T.V., Lavrik I.N., Ivanisenko V.A. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med. Genomics. 2019;12(Suppl. 2):117-131. DOI 10.1186/s12920-019-0492-9

52. Salminen T.A., Blomqvist K., Edqvist J. Lipid transfer proteins: classification, nomenclature, structure, and function. Planta. 2016; 244(5):971-997. DOI 10.1007/s00425-016-2585-4

53. San Clemente H., Jamet E. WallProtDB, a database resource for plant cell wall proteomics. Plant Methods. 2015;11(1):2. DOI 10.1186/s13007-015-0045-y

54. Schweikert C., Liszkay A., Schopfer P. Scission of polysaccharides by peroxidase-generated hydroxyl radicals. Phytochemistry. 2000; 53(5):565-570. DOI 10.1016/S0031-9422(99)00586-5

55. Seifert G.J. Fascinating fasciclins: A surprisingly widespread family of proteins that mediate interactions between the cell exterior and the cell surface. Int. J. Mol. Sci. 2018;19(6):1628. DOI 10.3390/ijms19061628

56. Shaik R., Ramakrishna W. Genes and co-expression modules common to drought and bacterial stress responses in Arabidopsis and rice. PLoS One. 2013;8(10):e77261. DOI 10.1371/journal.pone.0077261

57. Sharma V., Surolia A. Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity. J. Mol. Biol. 1997;267(2):433-445. DOI 10.1006/jmbi.1996.0863

58. Shohat H., Eliaz N.I., Weiss D. Gibberellin in tomato: metabolism, signaling and role in drought responses. Mol. Horticulture. 2021;1(1): 15. DOI 10.1186/s43897-021-00019-4

59. Singh D., Laxmi A. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front. Plant Sci. 2015; 6:895. DOI 10.3389/fpls.2015.00895

60. Söderman E., Mattsson J., Engström P. The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J. 1996;10(2):375-381. DOI 10.1046/j.1365-313X.1996.10020375.x

61. Taylor-Teeples M., Lin L., de Lucas M., Turco G., Toal T.W., Gaudinier A., Young N.F., Trabucco G.M., Veling M.T., Lamothe R., Handakumbura P.P., Xiong G., Wang C., Corwin J., Tsoukalas A., Zhang L., Ware D., Pauly M., Kliebenstein D.J., Dehesh K., Tagkopoulos I., Breton G., Pruneda-Paz J.L., Ahnert S.E., Kay S.A., Hazen S.P., Brady S.M. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature. 2015;517(7536):571-575. DOI 10.1038/nature14099

62. Thamil Arasan S.K., Park J.I., Ahmed N.U., Jung H.J., Hur Y., Kang K.K., Lim Y.P., Nou I.S. Characterization and expression analysis of dirigent family genes related to stresses in Brassica. Plant Physiol. Biochem. 2013;67:144-153. DOI 10.1016/j.plaphy.2013.02.030

63. Van Holle S., De Schutter K., Eggermont L., Tsaneva M., Dang L., Van Damme E.J.M. Comparative study of lectin domains in model species: new insights into evolutionary dynamics. Int. J. Mol. Sci. 2017;18(6):1136. DOI 10.3390/ijms18061136

64. Wagner T.A., Kohorn B.D. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell. 2001;13(2):303-318. DOI 10.1105/tpc.13.2.303

65. Xia X., Shao Y., Jiang J., Ren L., Chen F., Fang W., Guan Z., Chen S. Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium). BMC Genomics. 2014;15(1): 1050. DOI 10.1186/1471-2164-15-1050

66. Yamaguchi K., Takahashi Y., Berberich T., Imai A., Takahashi T., Michael A.J., Kusano T. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem. Biophys. Res. Commun. 2007;352(2):486-490. DOI 10.1016/j.bbrc.2006.11.041

67. Yamaguchi-Shinozaki K., Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 2006;57(1):781-803. DOI 10.1146/annurev.arplant.57.032905.105444

68. Yankina M.A., Saik O.V., Ivanisenko V.A., Demenkov P.S., Khusnutdinova E.K. Evaluation of prioritization methods of extrinsic apoptotic signaling pathway genes for retrieval of the new candidates associated with major depressive disorder. Rus. J. Genet. 2018;54:1366-1374. DOI 10.1134/S1022795418110170

69. Yoshida T., Fujita Y., Sayama H., Kidokoro S., Maruyama K., Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABREdependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 2010;61(4):672-685. DOI 10.1111/j.1365-313X.2009.04092.x

70. Zhang Z., Wang N., Jiang S., Xu H., Wang Y., Wang C., Li M., Liu J., Qu C., Liu W., Wu S., Chen X., Chen X. Analysis of the xyloglucan endotransglucosylase/hydrolase gene family during apple fruit ripening and softening. J. Agric. Food Chem. 2017;65(2):429-434. DOI 10.1021/acs.jafc.6b04536

71. Zhao K., Lin F., Romero-Gamboa S.P., Saha P., Goh H.J., An G., Jung K.H., Hazen S.P., Bartley L.E. Rice genome-scale network integration reveals transcriptional regulators of grass cell wall synthesis. Front. Plant Sci. 2019;10:1275. DOI 10.3389/fpls.2019.01275

72. Zhou M., Chen H., Wei D., Ma H., Lin J. Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature. Sci. Rep. 2017;7(1):39819. DOI 10.1038/srep39819


Рецензия

Просмотров: 750


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)