Aberrant methylation of placental development genes in chorionic villi of spontaneous abortions with trisomy 16
https://doi.org/10.18699/vjgb-24-24
Abstract
In humans, aneuploidy is incompatible with the birth of healthy children and mainly leads to the death of embryos in the early stages of development in the first trimester of pregnancy. Trisomy 16 is the most common aneup loidy among spontaneous abortions of the first trimester of pregnancy. However, the mechanisms leading to the death of embryos with trisomy 16 remain insufficiently investigated. One of these potential mechanisms is abnormal placental development, including aberrant remodeling of spiral arteries. Spiral artery remodeling involves the migration of trophoblast cells into the maternal spiral arteries, replacing their endothelium and remodeling to ensure a stable embryonic nutrition and oxygen supply. This is a complex process which depends on many factors from both the embryo and the mother. We analyzed the methylation level of seven genes (ADORA2B, NPR3, PRDM1, PSG2, PHTLH, SV2C, and TICAM2) involved in placental development in the chorionic villi of spontaneous abortions with trisomy 16 (n = 14), compared with spontaneous abortions with a normal karyotype (n = 31) and the control group of induced abortions (n = 10). To obtain sequencing libraries, targeted amplification of individual gene regions using designed oligonucleot ide primers for bisulfite-converted DNA was used. The analysis was carried out using targeted bisulfite massive parallel sequencing. In the group of spontaneous abortions with trisomy 16, the level of methylation of the PRDM1 and PSG2 genes was significantly increased compared to induced abortions (p = 0.0004 and p = 0.0015, respectively). In the group of spontaneous abortions, there was no increase in the level of methylation of the PRDM1 and PSG2 genes, but the level of methylation of the ADORA2B gene was significantly increased compared to the induced abortions (p = 0.032). The results obtained indicate the potential mechanisms of the pathogenetic effect of trisomy 16 on the placental development with the participation of the studied genes.
Keywords
About the Authors
О. Yu. VasilyevaRussian Federation
Tomsk
E. N. Tolmacheva
Russian Federation
Tomsk
A. E. Dmitriev
Russian Federation
Tomsk
Ya. A. Darkova
Russian Federation
Tomsk
E. A. Sazhenova
Russian Federation
Tomsk
T. V. Nikitina
Russian Federation
Tomsk
I. N. Lebedev
Russian Federation
Tomsk
S. A. Vasilyev
Russian Federation
Tomsk
References
1. Blair J.D., Langlois S., Mcfadden D.E., Robinson W.P. Overlapping DNA methylation profile between placentas with trisomy 16 and early-onset preeclampsia. Placenta. 2014;35(3):216-222. DOI 10.1016/j.placenta.2014.01.001
2. Du G., Yu M., Xu Q., Huang Z., Huang X., Han L., Fan Y., Zhang Y., Wang R., Xu S., Han X., Fu G., Lv S., Qin Y., Wang X., Lu C., Xia Y. Hypomethylation of PRDM1 is associated with recurrent pregnancy loss. J. Cell. Mol. Med. 2020;24(12):7072-7077. DOI 10.1111/jcmm.15335
3. Fang Y., Wan C., Wen Y., Wu Z., Pan J., Zhong M., Zhong N. Autismassociated synaptic vesicle transcripts are differentially expressed in maternal plasma exosomes of physiopathologic pregnancies. J. Transl. Med. 2021;19(1):154. DOI 10.1186/s12967-021-02821-6
4. Grunblatt E., Mandel S., Jacob-Hirsch J., Zeligson S., Amariglo N., Rechavi G., Li J., Ravid R., Roggendorf W., Riederer P., Youdim M.B. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J. Neural Transm. (Vienna). 2004;111(12):1543-1573. DOI 10.1007/s00702-004-0212-1
5. Jauniaux E., Poston L., Burton G.J. Placental-related diseases of pregnancy: Involvement of oxidative stress and implications in human evolution. Hum. Reprod. Update. 2006;12(6):747-755. DOI 10.1093/humupd/dml016
6. Jeong D.S., Kim M.H., Lee J.Y. Depletion of CTCF disrupts PSG gene expression in the human trophoblast cell line Swan 71. FEBS Open Bio. 2021;11(3):804-812. DOI 10.1002/2211-5463.13087
7. Jia R.Z., Zhang X., Hu P., Liu X.M., Hua X.D., Wang X., Ding H.J. Screening for differential methylation status in human placenta in preeclampsia using a CpG island plus promoter microarray. Int. J. Mol. Med. 2012;30(1):133-141. DOI 10.3892/ijmm. 2012.983
8. Lebedev I.N., Ostroverkhova N.V., Nikitina T.V., Sukhanova N.N., Nazarenko S.A. Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase FISH analysis. Eur. J. Hum. Genet. 2004;12(7):513-520. DOI 10.1038/sj.ejhg.5201178
9. Lim J.H., Kang Y.J., Bak H.J., Kim M.S., Lee H.J., Kwak D.W., Han Y.J., Kim M.Y., Boo H., Kim S.Y., Ryu H.M. Epigenomewide DNA methylation profiling of preeclamptic placenta according to severe features. Clin. Epigenetics. 2020;12(1):128. DOI 10.1186/s13148-020-00918-1
10. Maioli E., Fortino V., Pacini A. Parathyroid hormone-related protein in preeclampsia: a linkage between maternal and fetal failures. Biol. Reprod. 2004;71(6):1779-1784. DOI 10.1095/biolreprod.104.030932
11. Mason C.W., Buhimschi I.A., Buhimschi C.S., Dong Y., Weiner C.P., Swaan P.W. ATP-binding cassette transporter expression in human placenta as a function of pregnancy condition. Drug Metab. Dispos. 2011;39(6):1000-1007. DOI 10.1124/dmd.111.038166
12. McMaster M.T., Zhou Y., Fisher S.J. Abnormal placentation and the syndrome of preeclampsia. Semin. Nephrol. 2004;24(6):540-547. DOI 10.1016/s0270-9295(04)00124-x
13. Nikitina T.V., Sazhenova E.A., Tolmacheva E.N., Sukhanova N.N., Kashevarova A.A., Skryabin N.A., Vasilyev S.A., Nem tseva T.N., Yuriev S.Y., Lebedev I.N. Comparative cytogenetic analysis of spontaneous abortions in recurrent and sporadic pregnancy losses. Biomed. Hub. 2016;1(1):1-11. DOI 10.1159/000446099
14. Paul S., Home P., Bhattacharya B., Ray S. GATA factors: Master regulators of gene expression in trophoblast progenitors. Placenta. 2017;60(Suppl. 1):S61-S66. DOI 10.1016/j.placenta.2017.05.005
15. Red-Horse K., Zhou Y., Genbacev O., Prakobphol A., Foulk R., Mcmas ter M., Fisher S.J. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J. Clin. Invest. 2004;114(6):744-754. DOI 10.1172/JCI22991
16. Sandor C., Robertson P., Lang C., Heger A., Booth H., Vowles J., Witty L., Bowden R., Hu M., Cowley S.A., Wade-Martins R., Webber C. Transcriptomic profiling of purified patient-derived dopamine neurons identifies convergent perturbations and therapeutics for Parkinson’s disease. Hum. Mol. Genet. 2017;26(3): 552-566. DOI 10.1093/hmg/ddw412
17. Tolmacheva E.N., Kashevarova A.A., Skryabin N.A., Lebedev I.N. Epigenetic effects of trisomy 16 in human placenta. Mol. Bio l. 2013;47(3):373-381. DOI 10.1134/s0026893313030175
18. Tolmacheva E.N., Vasilyev S.A., Nikitina T.V., Lytkina E.S., Sazhenova E.A., Zhigalina D.I., Vasilyeva O.Y., Markov A.V., Demeneva V.V., Tashireva L.A., Kashevarova A.A., Lebedev I.N. Identification of differentially methylated genes in firsttrimester placentas with trisomy 16. Sci. Rep. 2022;12(1):1166. DOI 10.1038/s41598-021-04107-9
19. Vasilyev S.A., Timoshevsky V.A., Lebedev I.N. Cytogenetic mechanisms of aneuploidy in somatic cells of chemonuclear industry professionals with incorporated plutonium-239. Russ. J. Genet. 2010;46(11):1381-1385. DOI 10.1134/s1022795410110141
20. Vasilyev S.A., Tolmacheva E.N., Vasilyeva O.Y., Markov A.V., Zhigalina D.I., Zatula L.A., Lee V.A., Serdyukova E.S., Sazhenova E.A., Nikitina T.V., Kashevarova A.A., Lebedev I.N. LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy. J. Assist. Reprod. Genet. 2021;38(1):139-149. DOI 10.1007/s10815-020-02003-1
21. Yeung K.R., Chiu C.L., Pidsley R., Makris A., Hennessy A., Lind J.M. DNA methylation profiles in preeclampsia and healthy control placentas. Am. J. Physiol. Heart Circ. Physiol. 2016; 310(10):H1295-H1303. DOI 10.1152/ajpheart.00958.2015
22. Zhang W., Li S., Lou J., Li H., Liu M., Dong N., Wu Q. Atrial natriuretic peptide promotes uterine decidualization and a TRAIL-dependent mechanism in spiral artery remodeling. J. Clin. Invest. 2021; 131(20):e151053. DOI 10.1172/JCI151053