Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Влияние транспозонов на развитие болезни Альцгеймера

https://doi.org/10.18699/vjgb-24-27

Аннотация

Болезнь Альцгеймера поражает в среднем 5 % населения со значительным увеличением распространенности с возрастом, что свидетельствует о возможном влиянии на данную патологию тех же механизмов, которые лежат в основе старения человека. Исследование этих механизмов перспективно для разработки эффективных методов лечения и профилактики заболевания. Возможными участниками этих механизмов являются транспозоны, которые служат драйверами эпигенетической регуляции, поскольку формируют в эволюции видоспецифические распределения генов некодирующих РНК в геноме человека. Изучение роли микро-РНК в развитии болезни Альцгеймера актуально, поскольку по результатам проведенных GWAS ассоциаций белок-кодирующих генов (APOE4, ABCA7, BIN1, CLU, CR1, PICALM, TREM2) трудно объяснить сложный патогенез заболевания. Кроме того, в различных долях головного мозга при болезни Альцгеймера были обнаружены специфические изменения экспрессии множества генов, что может быть обу словлено глобальными регуляторными изменениями под влиянием транспозонов. Действительно, экспериментальные и клинические исследования показали патологическую активацию ретроэлементов при болезни Альцгеймера. Проведенный нами анализ научной литературы в соответствии с базой данных MDTE DB (microRNAs derived from transposable elements) позволил выявить 28 различных микро-РНК, происходящих от мобильных элементов (17 – от LINE, 5 – от SINE, 4 – от HERV, 2 – от ДНК-транспозонов), экспрессия которых специфически изменяется при данном заболевании (снижается у 17 и повышается у 11 микроРНК). Экспрессия 13 из 28 микро-РНК (miR-151a, -192, -211, -28, -31, -320c, -335, -340, -378a, -511, -576, -708, -885) меняется также при старении и развитии злокачественных новообразований, что подтверждает  возможное наличие общих патогенетических механизмов. Большинство из этих микро-РНК произошли от LINE-ретроэлементов, патологическая активация которых ассоциирована со старением, канцерогенезом и болезнью Альцгеймера, что свидетельствует в пользу гипотезы о том, что в основе этих трех процессов лежит первичная дисрегуляция транспозонов, которые служат драйверами эпигенетической регуляции экспрессии генов в онтогенезе. 

Об авторах

Р. Н. Мустафин
Башкирский государственный медицинский университет
Россия

Уфа



Э. К. Хуснутдинова
Башкирский государственный медицинский университет; Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук
Россия

Уфа



Список литературы

1. Abdel-Rahman O. Death from Alzheimer’s disease among cancer survivors: a population-based study. Curr. Med. Res. Opin. 2020;36(5): 835-841. DOI 10.1080/03007995.2020.1734921

2. Ando K., Nagaraj S., Kucukali F., de Fisenne M.A., Kosa A.C., Doeraene E., Gutierrez L.L., Brion J.P., Leroy K. PICALM and Alzheimer’s disease: An update and perspectives. Nutrients. 2022; 14(3):539. DOI 10.3390/nu14030539

3. Baeken M.W., Moosmann B., Hajieva P. Retrotransposon activation by distressed mitochondria in neurons. Biochem. Biophys. Res. Commun. 2020;525(3):570-575. DOI 10.1016/j.bbrc.2020.02.106

4. Barak B., Shvarts-Serebro I., Modai S., Gilam A., Okun E., Michaelson D.M., Mattson M.P., Shomron N., Ashery U. Opposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNA in mouse models. Transl. Psychiatry. 2013;3(9):e304. DOI 10.1038/tp.2013.77

5. Barros-Viegas A.T., Carmona V., Ferreiro E., Guedes J., Cardoso A.M., Cunha P., de Almeida L.P., de Oliveira C.R., de Magalhães J.P., Peça J., Cardoso A.L. miRNA-31 improves cognition and abolis hes amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimer’s disease. Mol. Ther. Nucleic. Acids. 2020;19: 1219-1236. DOI 10.1016/j.omtn.2020.01.010

6. Behbahanipour M., Peymani M., Salari M., Hashemi M.S., Nasr-Esfahani M.H., Ghaedi K. Expression profiling of blood microRNAs 885, 361, and 17 in the patients with the Parkinson’s disease: integrating interatction data to uncover the possible triggering agerelated mechanisms. Sci. Rep. 2019;9:13759. DOI 10.1038/s41598-019-50256-3

7. Boese A.S., Saba R., Campbell K., Majer A., Medina S., Burton L., Booth T.F., Chong P., Westmacott G., Dutta S.M., Saba J.A., Booth S.A. MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol. Cell. Neurosci. 2016;71:13-24. DOI 10.1016/j.mcn.2015.12.001

8. Cai Y., Sun Z., Jia H., Luo H., Ye X., Wu Q., Xiong Y., Zhang W., Wan J. Rpph1 upregulates CDC42 expression and promotes hippocampal neuron dendritic spine formation by competing with miR-330-5p. Front. Mol. Neurosci. 2017;10:27. DOI 10.3389/fnmol.2017.00027

9. Chanda K., Mukhopadhyay D. LncRNA Xist, X-chromosome instability and Alzheimer’s disease. Curr. Alzheimer Res. 2020;17(6):499-507. DOI 10.2174/1567205017666200807185624

10. Cheng Y., Saville L., Gollen B., Isaac C., Belay A., Mehla J., Patel K., Thakor N., Mohajerani M.H., Zovoilis A. Increased processing of SINE B2 ncRNAs unveils a novel type of transcriptome deregulation in amyloid beta neuropathology. eLife. 2020;9:e61265. DOI 10.7554/eLife.61265

11. Cho J.H., Dimri M., Dimri G.P. MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence. J. Biol. Chem. 2015;290(16):10555-10567. DOI 10.1074/jbc.M114.624361

12. Cosin-Tomas M., Antonell A., Llado A., Alcoelea D., Fortea J., Ezquerra M., Lleo A., Marti M.J., Pallas M., Sanchez-Valle R.S., Molinue vo J.L., Sanfeliu C., Kaliman P. Plasma miR-545-3p as early biomarkers of Alheimer’s disease: potential and limitations. Mol. Neurobiol. 2017;54(7):5550-5562. DOI 10.1007/s12035-016-0088-8

13. Dakterzada F., Benítez I.D., Targa A., Lladó A., Torres G., Romero L., de Gonzalo-Calvo D., Moncusí-Moix A., Tort-Merino A., Huerto R., Sánchez-de-la-Torre M., Barbé F., Piñol-Ripoll G. Reduced levels of miR-342-5p in plasma are associated with worse cognitive evolution in patients with mild Alzheimer’s disease. Front. Aging Neurosci. 2021;13:705989. DOI 10.3389/fnagi.2021.705989

14. Dellago H., Preschitz-Kammerhofer B., Terlecki-Zaniewicz L., Schreiner C., Fortschegger K., Chang M.W., Hackl M., Monteforte R., Kuhnel H., Schosserer M., Gruber F., Tschachler E., Scheideler M., Grillari-Voglauer R., Grillari J., Wieser M. High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell. 2013;12(3):446-458. DOI 10.1111/acel.12069

15. Di Palo A.D., Siniscalchi C., Crescente G., Leo I.D., Fiorentino A., Pacifico S., Russo A., Potenza N. Effect of cannabidiolic acid, N- trans-caffeoyltyramine and cannabisin B from hemp seeds on microRNA expression in human neural cells. Curr. Issues Mol. Biol. 2022;44(10):5106-5116. DOI 10.3390/cimb44100347

16. Dong H., Li J., Huang L., Chen X., Li D., Wang T., Hu C., Xu J., Zhang C., Zen K., Xiao S., Yan Q., Wang C., Zhang C.Y. Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer’s disease. Dis. Markers. 2015;2015:625659. DOI 10.1155/2015/625659

17. Dong Z., Gu H., Guo Q., Liang S., Xue J., Yao F., Liu X., Li F., Liu H., Sun L., Zhao K. Profiling of serum exosome miRNA reveals the potential of a miRNA panel as diagnostic biomarker for Alzhei mer’s disease. Mol. Neurobiol. 2021;58(7):3084-3094. DOI 10.1007/s12035-021-02323-y

18. El Hajjar J., Chatoo W., Hanna R., Nkanza P., Tétreault N., Tse Y.C., Wong T.P., Abdouh M., Bernier G. Heterochromatic genome instability and neurodegeneration sharing similarities with Alzheimer’s disease in old Bmi1+/− mice. Sci. Rep. 2019;9(1):594. DOI 10.1038/s41598-018-37444-3

19. Eysert F., Coulon A., Boscher E., Vreulx A.C., Flaig A., Mendes T., Kilinc D., Lambert J., Chapuis J. Alzheimer’s genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner. Mol. Psychiatry. 2021;26(10):5592-5607. DOI 10.1038/s41380-020-00926-w

20. Fagone P., Mangano K., Martino G., Quattropani M.C., Pennisi M., Bella R., Fisicaro F., Nicoletti F., Petralia M.C. Characterization of altered molecular pathways in the entorhinal cortex of Alzheimer’s disease patients and in silico prediction of potential repurposable drugs. Genes (Basel). 2022;13(4):703. DOI 10.3390/genes13040703

21. Fan C., Wu Q., Ye X., Luo H., Yan D., Xiong D., Xiong Y., Zhu H., Diao Y., Zhang W., Wan J. Role of miR-211 in neuronal differentiation and viability: implications to pathogenesis of Alzheimer’s disease. Front. Aging Neurosci. 2016;8:166. DOI 10.3389/fnagi.2016.00166

22. Flamier A., El Hajjar J., Adjaye J., Fernandes K.J., Abdouh M., Bernier G. Modeling late-onset sporadic Alzheimer’s disease through BMI1 deficiency. Cell Rep. 2018;23(9):2653-2666. DOI 10.1016/j.celrep.2018.04.097

23. Gatz M., Reynolds C.A., Fratiglioni L., Johansson B., Mortimer J.A., Berg S., Fiske A., Pedersen N.L. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry. 2006;63(2): 168-174. DOI 10.1001/archpsyc.63.2.168

24. GNS H.S., Marise V.L.P., Satish K.S., Yergolkar A.V., Krishnamurthy M., Rajalekshmi G.S., Radhika K., Burri R.R. Untangling huge literature to disinter genetic underpinnings of Alzheimer’s disease: A systematic review and meta-analysis. Ageing Res. Rev. 2021;71: 101421. DOI 10.1016/j.arr.2021.101421

25. Goate A. Segregation of a missense mutation in the amyloid beta-protein precursor gene with familial Alzheimer’s disease. J. Alzheimers Dis. 2006;9(3 Suppl.):341-347. DOI 10.3233/jad-2006-9s338

26. Grundman J., Spencer B., Sarsoza F., Rissman R.A. Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression. PLoS One. 2021;16(9):e0251611. DOI 10.1371/journal.pone.0251611

27. Guerreiro R., Wojtas A., Bras J., Carrasquillo M., Rogaeva E., Majounie E., Cruchaga C., Sassi C., Kauwe J.S., Younkin S., Hazrati L., Collinge J., Pocock J., Lashley T., Williams J., Lambert J.C., Amouyel P., Goate A., Rademakers R., Morgan K., Powell J., St. George-Hyslop P., Singleton A., Hardy J., Alzheimer Genetic Analysis Group. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 2013;368(2):117-127. DOI 10.1056/NEJMoa1211851

28. Guo C., Jeong H.H., Hsieh Y.C., Klein H.U., Bennett D.A., De Jager P.L., Liu Z., Shulman J.M. Tau activates transposable elements in Alzheimer’s disease. Cell Rep. 2018;23(10):2874-2880. DOI 10.1016/j.celrep.2018.05.004

29. Guo D., Ye Y., Qi J., Tan X., Zhang Y., Ma Y., Li Y. Age and sex diffe rences in microRNAs expression during the process of thymus aging. Acta Biochim. Biophys. Sin. (Shanghai). 2017;49(5):409-419. DOI 10.1093/abbs/gmx029

30. Guo R., Fan G., Zhang J., Wu C., Du Y., Ye H., Li Z., Wang L., Zhang Z., Zhang L., Zhao Y., Lu Z. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease. J. Alzheimers Dis. 2017;60(4):1365-1377. DOI 10.3233/JAD-170343

31. Hajjari S.N., Sadigh-Eteghad S., Shanehbandi D., Teimourian S., Shahbazi A., Mehdizadeh M. MicroRNA-4422-5p as a negative regulator of amyloidogenic secretases: A potential biomarker for Alzheimer’s disease. Neuroscience. 2021;463:108-115. DOI 10.1016/j.neuroscience.2021.03.028

32. Hanna R., Flamier A., Barabino A., Bernier G. G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer’s disease. Nat. Commun. 2021; 12(1):1828. DOI 10.1038/s41467-021-22129-9

33. Harold D., Abraham R., Hollingworth P., Sims R., Gerrish A., Hamshere M.L., Pahwa J.S., Moskvina V., Dowzell K., Williams A., Jones N., Thomas C., Stretton A., Morgan A.R., Loveston S., Po well J., Proitsi P., Klopp N., Wichmann H.E., Carrasquillo M.M., Pan kratz V.S., Yonkin S.G., Holmans P.A., O’Donovan M., Owen M.J., Williams J. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 2009; 41(10):1088-1093. DOI 10.1038/ng.440

34. Henriques A.D., Machado-Silva W., Leite R.E.P., Suemoto C.K., Leite K.R.M., Srougi M., Pereira A.C., Jacob-Filho W., Brazilian Aging Brain Study Group. Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimer’s disease. Mech. Ageing Dev. 2020;191:111352. DOI 10.1016/j.mad.2020.111352

35. Hong H., Li Y., Su B. Identification of circulating miR-125b as a potential biomarker of Alzheimer’s disease in APP/PS1 transgenic mouse. J. Alzheimers Dis. 2017;59(4):1449-1458. DOI 10.3233/JAD-170156

36. Hou Y., Song H., Croteau D.L., Akbari M., Bohr V.A. Genome instability in Alzheimer disease. Mech. Ageing Dev. 2017;161(Pt. A):83-94. DOI 10.1016/j.mad.2016.04.005

37. Hu L., Zhang R., Yuan Q., Gao Y., Yang M.Q., Zhang C., Huang J., Sun Y., Yang W., Yang J.Y., Min Z., Cheng J., Deng Y., Hu X. The emerging role of microRNA-4487/6845-3p in Alzherimer’s disease pathologies is induced by Aβ25-35 triggered in SH-SY5Y cell. BMC Syst. Biol. 2018;12(Suppl. 7):119. DOI 10.1186/s12918-018-0633-3

38. Ipson B.R., Fletcher M.B., Espinoza S.E., Fisher A.L. Identifying exo some-derived microRNAs as candidate biomarkers of frailty. J. Frailty Aging. 2018;7(2):100-103. DOI 10.14283/jfa.2017.45

39. Jia Y.M., Zhu C.F., She Z.Y., Wu M.M., Wu Y.Y., Zhou B.Y., Zhang N. Effects on autophagy of moxibustion at governor vessel acupoints in APP/PS1double-Transgenic Alzheimer’s Disease Mice through the lncRNA Six3os1/miR-511-3p/AKT3 Molecular Axis. Evid. Based Complement. Alternat. Med. 2022;2022:3881962. DOI 10.1155/2022/3881962

40. Kunkle B.W., Jaworski J., Barral S., Bardarajan B., Beecham G.W., Haines J.L., Pericak-Vance M. Genome-wide linkage analyses of non-Hispanic white families identify novel loci for familial late- onset Alzheimer’s disease. Alzheimer’s Dement. 2016;12(1):2-10. DOI 10.1016/j.jalz.2015.05.020

41. Lambert J.C., Heath S., Even G., Campion D., Sleegers K., Hiltunen M., Combarros O., Zelenika D., Bullido M.J., Tavernier B., Letenneur L., Bettens K., Berr C., Pasquier F., Fievet N., BarbeergerGateau P., Engelborghs S., Deyn P.D., Mateo I., Franck A., Helisalmi S., Tzourio C., Gut I., Van Broeckhoven C., Alperovitch A., Lathrop M., Amouyel P. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet. 2009;41(10):1094-1099. DOI 10.1038/ng.439

42. Lanni C., Masi M., Racchi M., Govoni S. Cancer and Alzheimer’s disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol. Psychiatry. 2021;26(1):280-295. DOI 10.1038/s41380-020-0760-2

43. Larsen P.A., Lutz M.W., Hunnicutt K.E., Mihovilovic M., Saunders A.M., Yoder A.D., Roses A.D. The Alu neurodegeneration hypothesis: A primate-specific mechanism for neuronal transcription noise, mitochondrial dysfunction, and manifestation of neurodegenerative disease. Alzheimer’s Dement. 2017;13(7):828-838. DOI 10.1016/j.jalz.2017.01.017

44. Lee B.P., Buric I., George-Pandeth A., Flurkey K., Harrison D.E., Yuan R., Peters L.L., Kuchel G.A., Melzer D., Harries L.W. MicroRNAs miR-203-3p, miR-664-3p and miR-708-5p are associated with median strain lifespan in mice. Sci. Rep. 2017;7:44620. DOI 10.1038/srep44620

45. Levy-Lahad E., Wasco W., Poorkaj P., Romano D.M., Oshima J., Pettingell W.H., Yu C.E., Jondro P.D., Schmidt S.D., Wang K. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269(5226):973-977. DOI 10.1126/science.7638622

46. Liu Q.Y., Chang M.N.V., Lei J.X., Koukiekolo R., Smith B., Zhang D., Ghribi O. Identification of microRNAs involved in Alzheimer’s progression using a rabbit model of the disease. Am. J. Neurodegener. Dis. 2014;3(1):33-44

47. Lu L., Dai W., Zhu X., Ma T. Analysis of serum miRNAs in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2021;36: 15333175211021712. DOI 10.1177/15333175211021712

48. Ma F.C., Wang H.F., Cao X.P., Tan C.C., Tan L., Yu J.T. Meta-analysis of the association between variants in ABCA7 and Alzheimer’s disease. J. Alzheimers Dis. 2018;63(4):1261-1267. DOI 10.3233/JAD-180107

49. Macciardi F., Bacalini M.G., Miramontes R., Boattini A., Taccioli C., Modenini G., Malhas R., Anderlucci L., Gusev Y., Gross T.J., Padilla R.M., Fiandaca M.S., Head E., Guffanti G., Federoff H.J., Mapstone M. A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer’s disease. Geroscience. 2022;44(3):15251550. DOI 10.1007/s11357-022-00580-w

50. Majumder P., Chanda K., Das D., Singh B.K., Charkrabarti P., Jana N.R., Mukhopadhyay D. A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer’s disease and type 2 diabetes. Biochem. J. 2021;478(17):3297-3317. DOI 10.1042/BCJ20210175

51. Marioni R.E., Harris S.E., Zhang Q., McRae A.F., Hagenaars S.P., Hill W.D., Davies G., Ritchie C.W., Gale C.R., Starr J.M., Goate A.M., Porteous D.J., Yang J., Evans K.L., Deary I.J., Wray N.R., Viss cher P.M. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry. 2018;8(1):99. DOI 10.1038/s41398-018-0150-6

52. Mustafin R.N. The relationship between transposons and transcription factors in the evolution of eukaryotes. Zhurnal Evolyutsionnoi Biokhimii i Fiziologii = Journal of Evolutionary Biochemistry and Physiology. 2019;55(1):14-22. DOI 10.1134/S004445291901008X (in Russian)

53. Mustafin R.N., Khusnutdinova E.K. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(6):742-749. DOI 10.18699/VJ17.30-o (in Russian)

54. Niu H., Alvarez-Alvarez I., Guillen-Grima F., Aguinaga-Ontoso I. Prevalence and incidence of Alzheimer’s disease in Europe: A metaanalysis. Neurologia. 2017;32(8):523-532. DOI 10.1016/j.nrl.2016.02.016

55. Noren Hooten N., Fitzpatrick M., Wood W.H. 3rd, De S., Ejiogu N., Zhang Y., Mattison J.A., Becker K.G., Zonderman A.B., Evans M.K. Age-related changes in microRNA levels in serum. Aging (Albany N. Y.). 2013;5(10):725-740. DOI 10.18632/aging.100603

56. Pan W., Hu Y., Wang L., Li J. Circ_0003611 acts as a miR-885-5p sponge to aggravate the amyloid-β-induced neuronal injury in Alzheimer’s disease. Metab. Brain Dis. 2022;37(4):961-971. DOI 10.1007/s11011-022-00912-x

57. Pascarella G., Hon C.C., Hashimoto K., Busch A., Luginbuhl J., Parr C., Yip W.H., Abe K., Kratz A., Bonetti A., Agostini F., Severin J., Murayama S., Suzuki Y., Gustincich S., Frith M., Carninci P. Recombination of repeat elements generates somatic complexity in human genomes. Cell. 2022;185(16):3025-3040.e6. DOI 10.1016/j.cell.2022.06.032

58. Patel H., Dobson R.J.B., Newhouse S.J. A meta-analysis of Alzheimer’s disease brain transcriptomic data. J. Alzheimers Dis. 2019; 68(4):1635-1656. DOI 10.3233/JAD-181085

59. Protasova M.S., Andreeva T.V., Rogaev E.I. Factors regulating the activity of LINE1 retrotransposons. Genes (Basel). 2021;12(10):1562. DOI 10.3390/genes12101562

60. Qin Z., Han X., Ran J., Guo S., Lv L. Exercise-mediated alteration of miR-192-5p is associated with cognitive improvement in Alzheimer’s disease. Neuroimmunomodulation. 2022;29(1):36-43. DOI 10.1159/000516928

61. Raheja R., Regev K., Healy B.C., Mazzola M.A., Beynon V., Glehn F.V., Paul A., Diaz-Cruz C., Gholipour T., Glanz B.I., Kivisakk P., Chitnis T., Weiner H.L., Berry J.D., Gandhi R. Correlating serum microRNAs and clinical parameters in amyotrophic lateral sclerosis. Muscle Nerve. 2018;58(2):261-269. DOI 10.1002/mus.26106

62. Rahman M.R., Islam T., Turanli B., Zaman T., Faruquee H.M., Rahman M.M., Mollah M.N.H., Nanda R.K., Arga K.Y., Gov E., Moni M.A. Network-based approach to identify molecular signatures and therapeutic agents in Alzheimer’s disease. Comput. Biol. Chem. 2019;78:431-439. DOI 10.1016/j.compbiolchem.2018.12.011

63. Rahman M.R., Islam T., Zaman T., Shahjaman M., Karim M.R., Huq F., Quinn J.M.W., Holsinger R.M.D., Gov E., Moni M.A. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: Insights from a systems biomedicine perspective. Genomics. 2020;112(2):1290-1299. DOI 10.1016/j.ygeno.2019.07.018

64. Raihan O., Brishti A., Molla M.R., Li W., Zhang Q., Xu P., Khan M.I., Zhang J., Liu Q. The age-dependent elevation of miR-335-3p leads to reduced cholesterol and impaired memory in brain. Neuroscience. 2018;390:160-173. DOI 10.1016/j.neuroscience.2018.08.003

65. Ramirez P., Zuniga G., Sun W., Beckmann A., Ochoa E., DeVos S., Hyman B., Chiu G., Roy E.R., Cao W., Orr M., Buggia-Prevot V., Ray W.J., Frost B. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Prog. Neurobiol. 2022;208:102181. DOI 10.1016/j.pneurobio.2021.102181

66. Ravel-Godreuil C., Zhaidi R., Bonnifet T., Joshi R.L., Fuchs J. Transposable elements as new players in neurodegenerative diseases. FEBS Lett. 2021;595(22):2733-2755. DOI 10.1002/1873-3468.14205

67. Robinson M., Lee B.Y., Hane F.T. Recent progress in Alzheimer’s disease research. Part 2: genetics and epidemiology. J. Alzheimers Dis. 2017;57(2):317-330. DOI 10.3233/JAD-161149

68. Rogaev E.I., Lukiw W.J., Lavrushina O., Rogaeva E.A., St. GeorgeHyslop P.H. The upstream promoter of the β-amyloid precursor protein gene (APP) shows differential patterns of methylation in human brain. Genomics. 1994;22(2):340-347. DOI 10.1006/geno.1994.1393

69. Samadian M., Gholipour M., Hajiesmaeili M., Taheri M., GhafouriFard S. The eminent role of microRNAs in the pathogenesis of Alz heimer’s disease. Front. Aging Neurosci. 2021;13:641080. DOI 10.3389/fnagi.2021.641080

70. Sataranatarajan K., Feliers D., Mariappan M.M., Lee H.J., Lee M.J., Day R.T., Bindu H., Yalamanchili H.B., Choudhury G.G., Barnes J.L., Remmen H.V., Richardson A., Kasinath B.S. Molecular events in matrix protein metabolism in the aging kidney. Aging Cell. 2012;11(6):1065-1073. DOI 10.1111/acel.12008

71. Satoh J.I., Kino Y., Niida S. MicroRNA-seq data analysis pipeline to identify blood biomarkes for Alzheimer’s disease from public data. Biomark. Insights. 2015;10:21-31. DOI 10.4137/BMI.S25132

72. Schwartzentruber J., Cooper S., Liu J.Z., Barrio-Hernandez I., Bello E., Kumasaka N., Young A.M.H., Franklin R.J.M., Johnson T., Estrada K., Gaffney D.J., Beltrao P., Bassett A. Genome-wide metaanalysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 2021;53(3):392-402. DOI 10.1038/s41588-020-00776-w

73. Serrano-Pozo A., Das S., Hyman B.T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20(1):68-80. DOI 10.1016/S1474-4422(20)30412-9

74. Sherrington R., Rogaev E.I., Liang Y., Rogaeva E.A., Levesque G., Ikeda M., Chi H., Lin C., Li G., Holman K., Tsuda T., Mar L., Foncin J.F., Bruni A.C., Montesi M.P., Sorbi S., Rainero I., Pinessi L., Nee L., Chumakov I., Pollen D., Brookes A., Sanseau P., Polinsky R.J., Wasco W., Da Silva H.A., Haines J.L., Perkicak-Vance M.A., Tanzi R.E., Roses A.D., Fraser P.E., Rommens J.M., St. George-Hyslop P.H. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375(6534):754-760. DOI 10.1038/375754a0

75. Sierksma A., Lu A., Salta E., Eynden E.V., Callaerts-Vegh Z., D’Hooge R., Blum D., Buee L., Fiers M., Stooper B.D. Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology. Mol. Neurodegener. 2018;13(1):54. DOI 10.1186/s13024-018-0285-1

76. Smith R.G., Pishva E., Shireby G., Smith A.R., Roubroeks J.A.Y., Hannon E., Wheildon G., Mastroeni D., Gasparoni G., Riemenschneider M., Giese A., Sharp A.J., Schalkwyk L., Haroutunian V., Viechtb auer W., van den Hove D.L.A., Weedon M., Brokaw D., Francis P.T., Thomas A.J., Love S., Morgan K., Walter J., Coleman P.D., Bennett D.A., De Jager P.L., Mill J., Lunnon K. A meta-analysis of epigenome-wide association studies in Alzheimer’s disease highlights novel differentially methylated loci across cortex. Nat. Commun. 2021;12(1):3517. DOI 10.1038/s41467-021-23243-4

77. Smith-Vikos T., Liu Z., Parsons C., Gorospe M., Ferrucci L., Gill T.M., Slack F.J. A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging (Albany N.Y.). 2016;8(11):2971-2987. DOI 10.18632/aging.101106

78. Sun W., Samimi H., Gamez M., Zare H., Frost B. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci. 2018;21(8):1038-1048. DOI 10.1038/s41593-018-0194-1

79. Swarbrick S., Wragg N., Ghosh S., Stolzing A. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol. Neurobiol. 2019;56(9):6156-6167. DOI 10.1007/s12035-019-1500-y

80. Tan L., Yu J.T., Tan M.S., Liu Q.Y., Wang H.F., Zhang W., Jiang T., Tan L. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J. Alzheimers Dis. 2014;40(4):1017-1027. DOI 10.3233/JAD-132144

81. Tan X., Luo Y., Pi D., Xia L., Li Z., Tu Q. MiR-340 reduces the accumulation of amyloid-β through targeting BACE1 (β-site amyloid precursor protein cleaving enzyme 1) in Alzheimer’s disease. Curr. Neurovasc. Res. 2020;17(1):86-92. DOI 10.2174/1567202617666200117103931

82. Ukai T., Sato M., Akutsu H., Umezawa A., Mochida J. MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism. J. Orthop. Res. 2012;30(12):1915-1922. DOI 10.1002/jor.22157

83. Van Meter M., Kashyap M., Rezazadeh S., Geneva A.J., Morello T.D., Seluanov A., Gorbunova V. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 2014;5:5011. DOI 10.1038/ncomms6011

84. Wang D., Fei Z., Wang H. MiR-335-5p inhibits β-amyloid (Aβ) accumulation to attenuate cognitive deficits through targeting c-junN-terminal kinase 3 in Alzheimer’s disease. Curr. Neurovasc. Res. 2020;17(1):93-101. DOI 10.2174/1567202617666200128141938

85. Watcharanurak P., Mutirangura A. Human RNA-directed DNA-methylation methylates high-mobility group box 1 protein-produced DNA gaps. Epigenomics. 2022;14(12):741-756. DOI 10.2217/epi-20220022

86. Wei G., Qin S., Li W., Chen L., Ma F. MDTE DB: a database for microRNAs derived from Transposable element. IEEE/ACM Trans. Conflict of interest. The authors declare no conflict of interest. Comput. Biol. Bioinform. 2016;13:1155-1160. DOI 10.1109/TCBB.2015.2511767

87. Wong N.W., Chen Y., Chen S., Wang X. OncomiR: and online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics. 2018;34(4):713-715. DOI 10.1093/bioinformatics/btx627

88. Wood J.G., Helfand S.L. Chromatin structure and transposable elements in organismal aging. Front. Genet. 2013;4:274. DOI 10.3389/fgene.2013.00274

89. Xu X., Gu D., Xu B., Yang C., Wang L. Circular RNA circ_0005835 promotes neural stem cells proliferation and differentiate to neuron and inhibits inflammatory cytokines levels through miR-576-ep in Alz heimer’s disease. Environ. Sci. Pollut. Res. Int. 2022;29(24): 35934-35943. DOI 10.1007/s11356-021-17478-3

90. Yurov Y.B., Vorsanova S.G., Iourov I.Y. FISHing for crhomosome instability and aneuploidy in the Alzheimer’s disease brain. Methods Mol. Biol. 2023;2561:191-204. DOI 10.1007/978-1-0716-2655-9_10

91. Zhang H., Yang H., Zhang C., Jing Y., Wang C., Liu C., Zhang R., Wang J., Zhang J., Zen K., Zhang C., Li D. Investigation of microRNA expression in human serum during the aging process. J. Gerontol. A Biol. Sci. Med. Sci. 2015;70(1):102-109. DOI 10.1093/Gerona/glu145

92. Zhang T., Brinkley T.E., Liu K., Feng X., Marsh A.P., Kritchevsky S., Zhou X., Nicklas B.J. Circulating miRNAs as biomarkers of gait speed responses to aerobic exercise training in obese older adults. Aging (Albany N.Y.). 2017;9(3):900-913. DOI 10.18632/aging.101199

93. Zhao X., Wang S., Sun W. Expression of miR-28-3p in patients with Alzheimer’s disease before and after treatment and its clinical value. Exp. Ther. Med. 2020;20(3):2218-2226. DOI 10.3892/etm.2020.8920

94. Zheng D., Sabbagh J.J., Blair L.J., Darling A.L., Wen X., Dickey C.A. MicroRNA-511 binds to FKBP5 mRNA, which encodes a chaperone protein, and regulates neuronal differentiation. J. Biol. Chem. 2016;291(34):17897-17906. DOI 10.1074/jbc.M116.727941


Рецензия

Просмотров: 899


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)