Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Urine metabolic profile in rats with arterial hypertension of different genesis

https://doi.org/10.18699/vjgb-24-34

Abstract

The diversity of pathogenetic mechanisms underlying arterial hypertension leads to the necessity to devise a personalized approach to the diagnosis and treatment of the disease. Metabolomics is one of the promising methods for personalized medicine, as it provides a comprehensive understanding of the physiological processes occurring in the body. The metabolome is a set of low-molecular substances available for detection in a sample and representing intermediate and final products of cell metabolism. Changes in the content and ratio of metabolites in the sample mark the corresponding pathogenetic mechanisms by highlighting them, which is especially important for such a multifactorial disease as arterial hypertension. To identify metabolomic markers for hypertensive conditions of different origins, three forms of arterial hypertension (AH) were studied: rats with hereditary AH (ISIAH rat strain); rats with AH induced by L-NAME administration (a model of endothelial dysfunction with impaired NO production); rats with AH caused by the administration of deoxycorticosterone in combination with salt loading (hormone-dependent form – DOCAsalt AH). WAG rats were used as normotensive controls. 24-hour urine samples were collected from all animals and analyzed by quantitative NMR spectroscopy for metabolic profiling. Then, potential metabolomic markers for the studied forms of hypertensive conditions were identified using multivariate statistics. Analysis of the data obtained showed that hereditary stress-induced arterial hypertension in ISIAH rats was characterized by a decrease in the following urine metabolites: nicotinamide and 1-methylnicotinamide (markers of inflammatory processes), N- ace tyl glutamate (nitric oxide cycle), isobutyrate and methyl acetoacetate (gut microbiota). Pharmacologically induced forms of hypertension (the L-NAME and DOCA+NaCl groups) do not share metabolomic markers with hereditary AH. They are differentiated by N,N-dimethylglycine (both groups), choline (the L-NAME group) and 1-methylnicotinamide (the group of rats with DOCA-salt hypertension).

About the Authors

A. A. Sorokoumova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. A. Seryapina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



Yu. K. Polityko
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Scientific Research Institute of Neurosciences and Medicine
Russian Federation

Novosibirsk



L. V. Yanshole
International Tomography Center of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



Yu. P. Tsentalovich
International Tomography Center of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



М. А. Gilinsky
Scientific Research Institute of Neurosciences and Medicine
Russian Federation

Novosibirsk



А. L. Markel
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



References

1. Basting T., Lazartigues E. DOCA-salt hypertension: an update. Curr. Hypertens. Rep. 2017;19(4):32. DOI 10.1007/s11906-017-0731-4

2. Biancardi V.C., Bergamaschi C.T., Lopes O.U., Campos R.R. Sympathetic activation in rats with L-NAME-induced hypertension. Braz. J. Med. Biol. Res. 2007;40(3):401-408. DOI 10.1590/S0100-879X2006005000077

3. Bouatra S., Aziat F., Mandal R., Guo A.C., Wilson M.R., Knox C., Bjorndahl T.C., Krishnamurthy R., Saleem F., Liu P., Dame Z.T., Poelzer J., Huynh J., Yallou F.S., Psychogios N., Dong E., Bogumil R., Roehring C., Wishart D.S. The human urine metabolome. PLoS One. 2013;8(9):e73076. DOI 10.1371/journal.pone.0073076

4. Carey R.M., Moran A.E., Whelton P.K. Treatment of hypertension: a review. JAMA. 2022;328(18):1849-1861. DOI 10.1001/jama.2022.19590

5. Celotto A.C., Fukada S.Y., Laurindo F.R.M., Haddad R., Eberlin M.N., de Oliveira A.M. Chronic hyperhomocysteinemia impairs vascular function in ovariectomized rat carotid arteries. Amino Acids. 2010; 38(5):1515-1522. DOI 10.1007/s00726-009-0368-y

6. Chachaj A., Matkowski R., Gröbner G., Szuba A., Dudka I. Metabolomics of interstitial fluid, plasma and urine in patients with arterial hypertension: new insights into the underlying mechanisms. Diagnostics. 2020;10(11):936. DOI 10.3390/diagnostics10110936

7. Chan V., Hoey A., Brown L. Improved cardiovascular function with aminoguanidine in DOCA-salt hypertensive rats. Br. J. Pharmacol. 2006;148(7):902-908. DOI 10.1038/sj.bjp.0706801

8. Chen X.F., Chen X., Tang X. Short-chain fatty acid, acylation and cardiovascular diseases. Clin. Sci. (Lond.). 2020;134(6):657-676. DOI 10.1042/CS20200128

9. Chlopicki S., Swies J., Mogielnicki A., Buczko W., Bartus M., Lomnicka M., Adamus J., Gebicki J. 1-Methylnicotinamide (MNA), a primary metabolite of nicotinamide, exerts anti-thrombotic activity mediated by a cyclooxygenase-2/prostacyclin pathway. Br. J. Pharmacol. 2007;152(2):230-239. DOI 10.1038/sj.bjp.0707383

10. Chong Z.Z., Lin S.H., Maiese K. Nicotinamide modulates mitochondrial membrane potential and cysteine protease activity during cerebral vascular endothelial cell injury. J. Vasc. Res. 2002;39(2):131-147. DOI 10.1159/000057762

11. Corrêa-Oliveira R., Fachi J.L., Vieira A., Sato F.T., Vinolo M.A.R. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 2016;5(4):e73. DOI 10.1038/cti.2016.17

12. Cupisti A., Meola M., D’Alessandro C., Bernabini G., Pasquali E., Carpi A., Barsotti G. Insulin resistance and low urinary citrate excretion in calcium stone formers. Biomed. Pharmacother. 2007;61(1): 86-90. DOI 10.1016/j.biopha.2006.09.012

13. Ebrahimkhani M.R., Sadeghipour H., Dehghani M., Kiani S., Payabvash S., Riazi K., Honar H., Pasalar P., Mirazi N., Amanlou M., Farsam H., Dehpour A.R. Homocysteine alterations in experimental cholestasis and its subsequent cirrhosis. Life Sci. 2005;76(21):24972512. DOI 10.1016/j.lfs.2004.12.009

14. Felizardo R.J.F., Watanabe I.K.M., Dardi P., Rossoni L.V., Câmara N.O.S. The interplay among gut microbiota, hypertension and kidney diseases: the role of short-chain fatty acids. Pharmacol. Res. 2019;141:366-377. DOI 10.1016/j.phrs.2019.01.019

15. Fomenko M.V., Yanshole L.V., Tsentalovich Y.P. Stability of metabolomic content during sample preparation: blood and brain tissues. Metabolites. 2022;12(9):811. DOI 10.3390/metabo12090811

16. Fürstenau C.R., Trentin D. da S., Gossenheimer A.N., Ramos D.B., Casali E.A., Barreto-Chaves M.L.M., Sarkis J.J.F. Ectonucleo tidase activities are altered in serum and platelets of L-NAME-treated rats. Blood Cells Mol. Dis. 2008;41(2):223-229. DOI 10.1016/j.bcmd.2008.04.009

17. Ganguly P., Alam S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015;14(1):6. DOI 10.1186/1475-2891-14-6

18. Gupta V. Mineralocorticoid hypertension. Indian J. Endocrinol. Metab. 2011;15(Suppl.4):S298-S312. DOI 10.4103/2230-8210.86972

19. Hong S., Zhai B., Pissios P. Nicotinamide N-methyltransferase interacts with enzymes of the methionine cycle and regulates methyl donor metabolism. Biochemistry. 2018;57(40):5775-5779. DOI 10.1021/acs.biochem.8b00561

20. Kannt A., Pfenninger A., Teichert L., Tönjes A., Dietrich A., Schön M.R., Klöting N., Blüher M. Association of nicotinamide-Nmethyltransferase mRNA expression in human adipose tissue and the plasma concentration of its product, 1-methylnicotinamide, with insulin resistance. Diabetologia. 2015;58(4):799-808. DOI 10.1007/s00125-014-3490-7

21. Kim S., Goel R., Kumar A., Qi Y., Lobaton G., Hosaka K., Mohammed M., Handberg E.M., Richards E.M., Pepine C.J., Raizada M.K. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin. Sci. 2018; 132(6):701-718. DOI 10.1042/CS20180087

22. Markel A.L. Development of a new strain of rats with inherited stressinduced arterial hypertension. In: Sassard J. (Ed.) Genetic Hypertension. London, UK: John Libbey & Company, 1992;218: 405-407

23. McGregor D.O., Dellow W.J., Lever M., George P.M., Robson R.A., Chambers S.T. Dimethylglycine accumulates in uremia and predicts elevated plasma homocysteine concentrations. Kidney Int. 2001; 59(6):2267-2272. DOI 10.1046/j.1523-1755.2001.00743.x

24. Niewczas M.A., Mathew A.V., Croall S., Byun J., Major M., Sabisetti V.S., Smiles A., Bonventre J.V., Pennathur S., Krolewski A.S. Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease. Diabetes Care. 2017; 40(3):383-390. DOI 10.2337/dc16-0173

25. Niwa T., Takeda N., Yoshizumi H. RNA metabolism in uremic patients: accumulation of modified ribonucleosides in uremic serum: technical note. Kidney Int. 1998;53(6):1801-1806. DOI 10.1046/j.1523-1755.1998.00944.x

26. Nyhan W.L. Disorders of purine and pyrimidine metabolism. Mol. Genet. Metab. 2005;86(1-2):25-33. DOI 10.1016/j.ymgme.2005.07.027

27. Paré G., Chasman D.I., Parker A.N., Zee R.R.Y., Mälarstig A., Seedorf U., Collins R., Watkins H., Hamsten A., Miletich J.P., Ridker P.M. Novel associations of CPS1, MUT, NOX4, and DPEP1 with plasma homocysteine in a healthy population: a genome-wide evaluation of 13 974 participants in the Women’s Genome Health Study. Circ. Cardiovasc. Genet. 2009;2(2):142-150. DOI 10.1161/CIRCGENETICS.108.829804

28. Seryapina A.A., Malyavko A.A., Polityko Y.K., Yanshole L.V., Tsentalovich Y.P., Markel A.L. Metabolic profile of blood serum in experimental arterial hypertension. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(5): 530-538. DOI 10.18699/vjgb-23-64

29. Tsentalovich Y.P., Zelentsova E.A., Yanshole L.V., Yanshole V.V., Odud I.M. Most abundant metabolites in tissues of freshwater fish pike-perch (Sander lucioperca). Sci. Rep. 2020;10(1):17128. DOI 10.1038/s41598-020-73895-3

30. Tuchman M., Lee B., Lichter-Konecki U., Summar M.L., Yudkoff M., Cederbaum S.D., Kerr D.S., Diaz G.A., Seashore M.R., Lee H.S., McCarter R.J., Krischer J.P., Batshaw M.L. Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol. Genet. Metab. 2008;94(4):397-402. DOI 10.1016/j.ymgme.2008.05.004

31. Ungerstedt J.S., Heimersson K., Söderström T., Hansson M. Nicotinamide inhibits endotoxin-induced monocyte tissue factor expression. J. Thromb. Haemost. 2003;1(12):2554-2560. DOI 10.1046/j.1538-7836.2003.00463.x

32. Visinoni S., Fam B.C., Blair A., Rantzau C., Lamont B.J., Bouwman R., Watt M.J., Proietto J., Favaloro J.M., Andrikopoulos S. Increased glucose production in mice overexpressing human fructose-1,6-bisphosphatase in the liver. Am. J. Physiol. Endocrinol. Metab. 2008; 295(5):E1132-E1141. DOI 10.1152/ajpendo.90552.2008

33. Wald D.S., Law M., Morris J.K. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. Br. Med. J. 2002;325(7374):1202-1206. DOI 10.1136/bmj.325.7374.1202

34. Xu J., Chen Q., Cai M., Han X., Lu H. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry-based metabolomics study of diabetic distal symmetric polyneuropathy. J. Diabetes Investig. 2023;14(9):1110-1120. DOI 10.1111/jdi.14041

35. Yang T., Santisteban M.M., Rodriguez V., Li E., Ahmari N., Carvajal J.M., Zadeh M., Gong M., Qi Y., Zubcevic J., Sahay B., Pepine C.J., Raizada M.K., Mohamadzadeh M. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331-1340. DOI 10.1161/HYPERTENSIONAHA.115.05315

36. Yilmaz M.S., Coskun C., Suzer O., Yalcin M., Mutlu D., Savci V. Hypotensive effects of intravenously administered uridine and cytidine in conscious rats: involvement of adenosine receptors. Eur. J. Pharmacol. 2008;584(1):125-136. DOI 10.1016/j.ejphar.2008.01.044

37. Zeisel S.H. Choline: an essential nutrient for humans. Nutrition. 2000; 16(7-8):669-671. DOI 10.1016/S0899-9007(00)00349-X

38. Zelentsova E.A., Yanshole L.V., Melnikov A.D., Kudryavtsev I.S., Novoselov V.P., Tsentalovich Y.P. Post-mortem changes in metabolomic profiles of human serum, aqueous humor and vitreous humor. Metabolomics. 2020;16(7):80. DOI 10.1007/s11306-020-01700-3

39. Zhang A., Sun H., Wu X., Wang X. Urine metabolomics. Clin. Chim. Acta. 2012;414:65-69. DOI 10.1016/j.cca.2012.08.016


Review

Views: 460


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)