Анализ ассоциаций полиморфных вариантов генов hOGG1, APEX1, XPD, SOD2 и CAT, участвующих в процессах репарации ДНК и антиоксидантной защите, с риском развития рака молочной железы








https://doi.org/10.18699/vjgb-24-48
Аннотация
Онкологические заболевания молочной железы – одна из ведущих причин смертности у женщин. Рак молочной железы относится к числу распространенных мультифакториальных полигенных заболеваний, реализующихся в результате сочетанного взаимодействия генетических и средовых факторов. Наиболее часто встречаются люминальные опухоли. Люминальный подтип В рака молочной железы характеризуется худшим прогнозом и ранними рецидивами. Для изучения генетических факторов риска развития злокачественных новообразований молочной железы необходимо определить полиморфные варианты генов, играющих важную роль в канцерогенезе, к числу которых относятся гены репарации ДНК и системы антиоксидантной защиты. Изучены ассоциации полиморфизмов генов hOGG1 (rs1052133), APEX1 (rs1130409), XPD (rs13181), SOD2 (rs4880) и CAT (rs1001179) у 313 некурящих пациенток в постменопаузе с диагнозом люминального подтипа В Her2-негативного рака молочной железы. В контрольную группу вошли 233 здоровые некурящие женщины в постменопаузе. Зарегистрированы с поправкой на возраст статистически значимые ассоциации полиморфных вариантов генов XPD (rs13181) и APEX1 (rs1130409) с риском развития люминального подтипа В Her2-негативного рака молочной железы в лог-аддитивной модели наследования, гена CAT (rs1001179) – в доминантной модели OR = 1.41; CI 95 %: 1.08–1.85; Padj = 0.011; OR = 1.39; CI 95 %: 1.07–1.81; Padj = 0.013 и OR = 1.70; CI 95 %: 1.19–2.43; Padj = 0.004 соответственно). В группе женщин пожилого возраста (60–74 года) выявлена ассоциация вариантов гена CAT (rs1001179) с риском развития рака молочной железы в лог-аддитивной модели наследования (OR = 1.87; CI 95 %: 1.22–2.85; Padj = 0.0024). С помощью MDR-анализа найдена наиболее оптимальная статистически значимая 3-локусная модель межгенных взаимодействий при развитии онкозаболеваний молочной железы люминального подтипа В. MDR-анализ показал также тесное взаимодействие и взаимное усиление эффектов между локусами APEX1 и SOD2 и независимость эффектов данных локусов от эффекта локуса САТ при формировании люминального подтипа В рака молочной железы.
Об авторах
А. А. ТимофееваРоссия
Кемерово
В. И. Минина
Россия
Кемерово
А. В. Торгунакова
Россия
Кемерово
О. А. Соболева
Россия
Кемерово
Р. А. Титов
Россия
Кемерово
Я. А. Захарова
Россия
Кемерово
М. Л. Баканова
Россия
Кемерово
А. Н. Глушков
Россия
Кемерово
Список литературы
1. Ahn J., Gammon M.D., Santella R.M., Gaudet M.M., Britton J.A., Teitelbaum S.L., Terry M.B., Neugut A.I., Josephy P.D., Ambrosone C.B. Myeloperoxidase genotype, fruit and vegetable consumption, and breast cancer risk. Cancer Res. 2004;64(20):7634-7639. https://doi.org/10.1158/0008-5472.CAN-04-1843
2. Ahn J., Gammon M.D., Santella R.M., Gaudet M.M., Britton J.A., Teitelbaum S.L., Terry M.B., Nowell S., Davis W., Garza C., Neugut A.I., Ambrosone C.B. Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. Am. J. Epidemiol. 2005;162(10):943-952. https://doi.org/10.1093/aje/kwi306
3. Alateyah N., Gupta I., Rusyniak R.S., Ouhtit A. SOD2, a potential transcriptional target underpinning CD44-promoted breast cancer progression. Molecules. 2022;27(3):811. https://doi.org/10.3390/molecules27030811
4. Ambrosone C.B. Oxidants and antioxidants in breast cancer. Antioxid. Redox Signal. 2000;2(4):903-917. https://doi.org/10.1089/ars.2000.2.4-903
5. Bastaki M., Huen K., Manzanillo P., Chande N., Chen C., Balmes J.R., Tager I.B., Holland N. Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet. Genomics. 2006;16(4):279-286. https://doi.org/10.1097/01.fpc.0000199498.08725.9c
6. Bergman M., Ahnström M., Palmebäck Wegman P., Wingren S. Polymorphism in the manganese superoxide dismutase (MnSOD) gene and risk of breast cancer in young women. J. Cancer Res. Clin. Oncol. 2005;131(7):439-444. https://doi.org/10.1007/s00432-004-0663-7
7. Breast Cancer Association Consortium. Breast cancer risk genes - association analysis in more than 113,000 women. N. Engl. J. Med. 2021;384(5):428-439. https://doi.org/10.1056/NEJMoa1913948
8. Calculation for the Chi-Square Test [Electronic resource]. URL: http://www.quantpsy.org/chisq/chisq.htm (accessed: 06.07.2023)
9. Caporaso N. The molecular epidemiology of oxidative damage to DNA and cancer. J. Natl. Cancer Inst. 2003;95(17):1263-1265. https://doi.org/10.1093/jnci/djg065
10. Dufloth R.M., Costa S., Schmitt F., Zeferino L.C. DNA repair gene polymorphisms and susceptibility to familial breast cancer in a group of patients from Campinas, Brazil. Genet. Mol. Res. 2005;4(4): 771-782
11. Ensembl [Electronic resource]. URL: http://www.ensembl.org/Homo_sapiens (accessed: 06.07.2023)
12. Ferreira M.A., Gamazon E.R., Al-Ejeh F., Aittomäki K., Andrulis I.L., Anton-Culver H., Arason A., Arndt V., Aronson K.J., Arun B.K., ... Yang X.R., Yannoukakos D., Ziogas A., Kraft P., Antoniou A.C., Zheng W., Easton D.F., Milne R.L., Beesley J., Chenevix-Trench G. Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nat. Commun. 2019;10(1): 1741. https://doi.org/10.1038/s41467-018-08053-5
13. Fontana L., Bosviel R., Delort L., Guy L., Chalabi N., Kwiatkowski F., Satih S., Rabiau N., Boiteux J.P., Chamoux A., Bignon Y.J., BernardGallon D.J. DNA repair gene ERCC2, XPC, XRCC1, XRCC3 polymorphisms and associations with bladder cancer risk in a French cohort. Anticancer Res. 2008;28(3B):1853-1856
14. Forsberg L., Lyrenäs L., de Faire U., Morgenstern R. A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic. Biol. Med. 2001;30(5):500-505. https://doi.org/10.1016/s0891-5849(00)00487-1
15. Gallegos-Arreola M.P., Ramírez-Patiño R., Sánchez-López J.Y., Zúñiga-González G.M., Figuera L.E., Delgado-Saucedo J.I., GómezMeda B.C., Rosales-Reynoso M.A., Puebla-Pérez A.M., Lemus-Varela M.L., Garibaldi-Ríos A.F., Marín-Domínguez N.A., Pacheco-Verduzco D.P., Mohamed-Flores E.A. SOD2 gene variants (rs4880 and rs5746136) and their association with breast cancer risk. Curr. Issues Mol. Biol. 2022;44(11):5221-5233. https://doi.org/10.3390/cimb44110355
16. Goldhirsch A., Winer E.P., Coates A.S., Gelber R.D., Piccart-Gebhart M., Thürlimann B., Senn Y.-J. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013;24(9):2206-2223. https://doi.org/10.1093/annonc/mdt303
17. Hadi M.Z., Coleman M.A., Fidelis K., Mohrenweiser H.W., Wilson D.M. 3rd. Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Res. 2000;28(20):3871- 3879. https://doi.org/10.1093/nar/28.20.3871
18. Hanawalt P.C. Subpathways of nucleotide excision repair and their regulation. Oncogene. 2002;21(58):8949-8956. https://doi.org/10.1038/sj.onc.1206096
19. Hardy-Weinberg equilibrium [Electronic resource]. URL: https://genecalc.pl/hardy-weinberg-page (accessed: 06.07.2023)
20. Ignatiadis M., Sotiriou C. Luminal breast cancer: from biology to treatment. Nat. Rev. Clin. Oncol. 2013;10(9):494-506. https://doi.org/10.1038/nrclinonc.2013.124
21. Jabir F.A., Hoidy W.H. Pharmacogenetics as personalized medicine: association investigation of SOD2 rs4880, CYP2C19 rs4244285, and FCGR2A rs1801274 polymorphisms in a breast cancer population in Iraqi women. Clin. Breast Cancer. 2018;18(5):e863-e868. https://doi.org/10.1016/j.clbc.2018.01.009
22. Jablonska E., Gromadzinska J., Peplonska B., Fendler W., Reszka E., Krol M.B., Wieczorek E., Bukowska A., Gresner P., Galicki M., Zambrano Quispe O., Morawiec Z., Wasowicz W. Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1. BMC Cancer. 2015;15:657. https://doi.org/10.1186/s12885-015-1680-4
23. Ji M., Tang J., Zhao J., Xu B., Qin J., Lu J. Polymorphisms in genes involved in drug detoxification and clinical outcomes of anthracycline-based neoadjuvant chemotherapy in Chinese Han breast cancer patients. Cancer Biol. Ther. 2012;13(5):264-271. https://doi.org/10.4161/cbt.18920
24. Kakkoura M.G., Demetriou C.A., Loizidou M.A., Loucaides G., Neophytou I., Malas S., Kyriacou K., Hadjisavvas A. MnSOD and CAT polymorphisms modulate the effect of the Mediterranean diet on breast cancer risk among Greek-Cypriot women. Eur. J. Nutr. 2016;55(4):1535-1544. https://doi.org/10.1007/s00394-015-0971-5
25. Kamali M., Kargar S., Heiranizadeh N., Zare M., Kargar Sh., Zare Shehneh M., Neamatzadeh H. Lack of any association between the Hogg1 Ser326Cys polymorphism and breast cancer risk: a systematic review and meta-analysis of 18 studies. Asian Pac. J. Cancer Prev. 2017;18(1):245-251. https://doi.org/10.22034/APJCP.2017.18.1.245
26. Kelley M.R., Georgiadis M.M., Fishel M.L. APE1/Ref-1 role in redox signaling: translational applications of targeting the redox function of the DNA repair/redox protein APE1/Ref-1. Curr. Mol. Pharmacol. 2012;5(1):36-53. https://doi.org/10.2174/1874467211205010036
27. Kim K.Y., Han W., Noh D.Y., Kang D., Kwack K. Impact of genetic polymorphisms in base excision repair genes on the risk of breast cancer in a Korean population. Gene. 2013;532(2):192-196. https://doi.org/10.1016/j.gene.2013.09.069
28. Li Y., Ambrosone C.B., McCullough M.J., Ahn J., Stevens V.L., Thun M.J., Hong C.C. Oxidative stress-related genotypes, fruit and vegetable consumption and breast cancer risk. Carcinogenesis. 2009;30(5):777-784. https://doi.org/10.1093/carcin/bgp053
29. Liou G.Y., Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010;44(5):479-496. https://doi.org/10.3109/10715761003667554
30. Martucci C.P., Fishman J. P450 enzymes of estrogen metabolism. Pharmacol. Ther. 1993;57(2-3):237-257. https://doi.org/10.1016/0163-7258(93)90057-k
31. McCullough L.E., Eng S.M., Bradshaw P.T., Cleveland R.J., Steck S.E., Terry M.B., Shen J., Crew K.D., Rossner P. Jr., Ahn J., Ambrosone C.B., Teitelbaum S.L., Neugut A.I., Santella R.M., Gammon M.D. Genetic polymorphisms in DNA repair and oxidative stress pathways may modify the association between body size and postmenopausal breast cancer. Ann. Epidemiol. 2015;25(4):263-269. https://doi.org/10.1016/j.annepidem.2015.01.009
32. Michailidou K., Lindström S., Dennis J., Beesley J., Hui S., Kar S., Lemaçon A., Soucy P., Glubb D., Rostamianfar A., … García-Closas M., Schmidt M.K., Chanock S.J., Dunning A.M., Edwards S.L., Bader G.D., Chenevix-Trench G., Simard J., Kraft P., Easton D.F. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92-94. https://doi.org/10.1038/nature24284
33. Mitra A.K., Singh N., Singh A., Garg V.K., Agarwal A., Sharma M., Chaturvedi R., Rath S.K. Association of polymorphisms in base excision repair genes with the risk of breast cancer: a case-control study in North Indian women. Oncol. Res. 2008;17(3):127-135. https://doi.org/10.3727/096504008785055567
34. Moore J.H., Gilbert J.C., Tsai C.T., Chiang F.T., Holden T., Barney N., White B.C. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J. Theor. Biol. 2006; 241(2):252-261. https://doi.org/10.1016/j.jtbi.2005.11.036
35. Nishimura R., Osako T., Okumura Y., Hayashi M., Toyozumi Y., Arima N. Ki-67 as a prognostic marker according to breast cancer subtype and a predictor of recurrence time in primary breast cancer. Exp. Ther. Med. 2010;1(5):747-754. https://doi.org/10.3892/etm.2010.133
36. Niu Y., Li F., Tang B., Shi Y., Yu P. Association of hOGG1 Ser326Cys polymorphism with gastric cancer risk: a meta-analysis. Mol. Biol. Rep. 2012;39(6):6563-6568. https://doi.org/10.1007/s11033-012-1485-3
37. Nyaga S.G., Lohani A., Jaruga P., Trzeciak A.R., Dizdaroglu M., Evans M.K. Reduced repair of 8-hydroxyguanine in the human breast cancer cell line, HCC1937. BMC Cancer. 2006;6:297. https://doi.org/10.1186/1471-2407-6-297
38. Onay V.U., Briollais L., Knight J.A., Shi E., Wang Y., Wells S., Li H., Rajendram I., Andrulis I.L., Ozcelik H. SNP-SNP interactions in breast cancer susceptibility. BMC Cancer. 2006;6:114. https://doi.org/10.1186/1471-2407-6-114
39. Pan Q., Liu Y.J., Bai X.F., Han X.L., Jiang Y., Ai B., Shi S.S., Wang F., Xu M.C., Wang Y.Z., Zhao J., Chen J.X., Zhang J., Li X.C., Zhu J., Zhang G.R., Wang Q.Y., Li C.Q. VARAdb: a comprehensive variation annotation database for human. Nucleic Acids Res. 2021; 49(D1):D1431-D1444. https://doi.org/10.1093/nar/gkaa922
40. Rodrigues P., Furriol J., Bermejo B., Chaves F.J., Lluch A., Eroles P. Identification of candidate polymorphisms on stress oxidative and DNA damage repair genes related with clinical outcome in breast cancer patients. Int. J. Mol. Sci. 2012;13(12):16500-16513. https://doi.org/10.3390/ijms131216500
41. Romanowicz H., Pyziak Ł., Jabłoński F., Bryś M., Forma E., Smolarz B. Analysis of DNA repair genes polymorphisms in breast cancer. Pathol. Oncol. Res. 2017;23(1):117-123. https://doi.org/10.1007/s12253-016-0110-5
42. Romaniuk O.P., Nikitchenko N.V., Savina N.V., Kuzhir T.D., Goncharova R.I. The polymorphism of DNA repair genes XPD, XRCC1, OGG1, and ERCC6, life expectancy, and the inclination to smoke. Russ. J. Genet. 2014;50(8):860-869. https://doi.org/10.1134/S1022795414080067
43. Sambrook J., Fritsch E.R., Maniatis T. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 1989
44. Samson M., Singh S.S., Rama R., Sridevi V., Rajkumar T. XPD Lys751Gln increases the risk of breast cancer. Oncol. Lett. 2011; 2(1):155-159. https://doi.org/10.3892/ol.2010.220
45. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics, 2021. CA Cancer J. Clin. 2021;71(1):7-33. https://doi.org/10.3322/caac.21654
46. Silva S.N., Cabral M.N., Bezerra de Castro G., Pires M., Azevedo A.P., Manita I., Pina J.E., Rueff J., Gaspar J. Breast cancer risk and polymorphisms in genes involved in metabolism of estrogens (CYP17, HSD17beta1, COMT and MnSOD): possible protective role of MnSOD gene polymorphism Val/Ala and Ala/Ala in women that never breast fed. Oncol. Rep. 2006;16(4):781-788
47. Smith T.R., Levine E.A., Freimanis R.I., Akman S.A., Allen G.O., Hoang K.N., Liu-Mares W., Hu J.J. Polygenic model of DNA repair genetic polymorphisms in human breast cancer risk. Carcinogenesis. 2008;29(11):2132-2138. https://doi.org/10.1093/carcin/bgn193
48. Smolarz B., Michalska M.M., Samulak D., Romanowicz H., Wójcik L. Polymorphism of DNA repair genes in breast cancer. Oncotarget. 2019;10(4):527-535. https://doi.org/10.18632/oncotarget.26568
49. SNPStats [Electronic resource]. URL: http://bioinfo.iconcologia.net/SNPstats (accessed: 06.07.2023)
50. Sugasawa K. Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat. Res. 2010;685(1-2): 29-37. https://doi.org/10.1016/j.mrfmmm.2009.08.004
51. Sutton A., Imbert A., Igoudjil A., Descatoire V., Cazanave S., Pessayre D., Degoul F. The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenet. Genomics. 2005;15(5):311-319. https://doi.org/10.1097/01213011-200505000-00006
52. Tas F., Hansel H., Belce A., Ilvan S., Argon A., Camlica H., Topuz E. Oxidative stress in breast cancer. Med. Oncol. 2005;22(1):11-15. https://doi.org/10.1385/MO:22:1:011
53. Tjønneland A., Christensen J., Thomsen B.L., Olsen A., Overvad K., Ewertz M., Mellemkjaer L. Hormone replacement therapy in relation to breast carcinoma incidence rate ratios: a prospective Danish cohort study. Cancer. 2004; 100(11):2328-2337. https://doi.org/10.1002/cncr.20250
54. Tsai S.M., Wu S.H., Hou M.F., Chen Y.L., Ma H., Tsai L.Y. Oxidative stress-related enzyme gene polymorphisms and susceptibility to breast cancer in non-smoking, non-alcohol-consuming Taiwanese women: a case-control study. Ann. Clin. Biochem. 2012;49(Pt. 2): 152-158. https://doi.org/10.1258/acb.2011.011098
55. Wang T., Wang H., Yang S., Guo H., Zhang B., Guo H., Wang L., Zhu G., Zhang Y., Zhou H., Zhang X., Li H., Su H. Association of APEX1 and OGG1 gene polymorphisms with breast cancer risk among Han women in the Gansu Province of China. BMC Med. Genet. 2018;19(1):67. https://doi.org/10.1186/s12881-018-0578-9
56. Wang Z., Ayoub E., Mazouzi A., Grin I., Ishchenko A.A., Fan J., Yang X., Harihar T., Saparbaev M., Ramotar D. Functional variants of human APE1 rescue the DNA repair defects of the yeast AP endonuclease/3′-diesterase-deficient strain. DNA Repair. 2014;22: 53-66. https://doi.org/10.1016/j.dnarep.2014.07.010
57. World Health Organization. [Electronic resource]. URL: https://www.who.int/ru (accessed: 03.10.2023)
58. Yan Y., Liang H., Light M., Li T., Deng Y., Li M., Li S., Qin X. XPD Asp312Asn and Lys751Gln polymorphisms and breast cancer susceptibility: a meta-analysis. Tumour Biol. 2014;35(3):1907-1915. https://doi.org/10.1007/s13277-013-1256-3
59. Zhang H., Ahearn T.U., Lecarpentier J., Barnes D., Beesley J., Qi G., Jiang X., O’Mara T.A., Zhao N., Bolla M.K., … Kraft P., Simard J., Pharoah P.D.P., Michailidou K., Antoniou A.C., Schmidt M.K., Chenevix-Trench G., Easton D.F., Chatterjee N., García-Closas M. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat. Genet. 2020;52(6):572-581. https://doi.org/10.1038/s41588-020-0609-2
60. Zhang L., Zhang Z., Yan W. Single nucleotide polymorphisms for DNA repair genes in breast cancer patients. Clin. Chim. Acta. 2005; 359(1-2):150-155. https://doi.org/10.1016/j.cccn.2005.03.047