1. Arnould C., Rocher V., Finoux A.-L., Clouaire T., Li K., Zhou F., Caron P., Mangeot P.E., Ricci E.P., Mourad R., Haber J.E., Noordermeer D., Legube G. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature. 2021;590(7847):660-665. https://doi.org/10.1038/s41586-021-03193-z
2. Arnould C., Rocher V., Saur F., Bader A.S., Muzzopappa F., Collins S., Lesage E., Le Bozec B., Puget N., Clouaire T., Mangeat T., Mourad R., Ahituv N., Noordermeer D., Erdel F., Bushell M., Marnef A., Legube G. Chromatin compartmentalization regulates the response to DNA damage. Nature. 2023;623(7985):183-192. https://doi.org/10.1038/s41586-023-06635-y
3. Aymard F., Bugler B., Schmidt C.K., Guillou E., Caron P., Briois S., Iacovoni J.S., Daburon V., Miller K.M., Jackson S.P., Legube G. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 2014; 21(4):366-374. https://doi.org/10.1038/nsmb.2796
4. Baergen A.K., Jeusset L.M., Lichtensztejn Z., McManus K.J. Diminished condensin gene expression drives chromosome instability that may contribute to colorectal cancer pathogenesis. Cancers (Basel ). 2019;11(8):1066. https://doi.org/10.3390/cancers11081066
5. Brinkman E.K., Chen T., Amendola M., van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42(22):e168. https://doi.org/10.1093/nar/gku936
6. Brinkman E.K., Chen T., de Haas M., Holland H.A., Akhtar W., van Steensel B. Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks. Mol. Cell. 2018;70(5):801-813.e6. https://doi.org/10.1016/j.molcel.2018.04.016
7. Canver M.C., Bauer D.E., Dass A., Yien Y.Y., Chung J., Masuda T., Maeda T., Paw B.H., Orkin S.H. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 2014;289(31):21312-21324. https://doi.org/10.1074/jbc.M114.564625
8. Chang H.-Y., Lee C.-Y., Lu C.-H., Lee W., Yang H.-L., Yeh H.-Y., Li H.-W., Chi P. Microcephaly family protein MCPH1 stabilizes RAD51 filaments. Nucleic Acids Res. 2020;48(16):9135-9146. https://doi.org/10.1093/nar/gkaa636
9. Chenouard V., Leray I., Tesson L., Remy S., Allan A., Archer D., Caulder A., Fortun A., Bernardeau K., Cherifi Y., Teboul L., David L., Anegon I. Excess of guide RNA reduces knockin efficiency and drastically increases on-target large deletions. iScience. 2023;26(4): 106399. https://doi.org/10.1016/j.isci.2023.106399
10. Choi E.-H., Yoon S., Park K.-S., Kim K.P. The homologous recombination machinery orchestrates post-replication DNA repair during self-renewal of mouse embryonic stem cells. Sci. Rep. 2017;7(1): 11610. https://doi.org/10.1038/s41598-017-11951-1
11. Dobbs F.M., van Eijk P., Fellows M.D., Loiacono L., Nitsch R., Reed S.H. Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq. Nat. Commun. 2022;13(1): 3989. https://doi.org/10.1038/s41467-022-31702-9
12. Dyson S., Segura J., Martínez-García B., Valdés A., Roca J. Condensin minimizes topoisomerase II-mediated entanglements of DNA in vivo. EMBO J. 2021;40(1):e105393. https://doi.org/10.15252/embj.2020105393
13. Gelot C., Guirouilh-Barbat J., Le Guen T., Dardillac E., Chailleux C., Canitrot Y., Lopez B.S. The cohesin complex prevents the end joining of distant DNA double-strand ends. Mol. Cell. 2016;61(1): 15-26. https://doi.org/10.1016/j.molcel.2015.11.002
14. Houlard M., Cutts E.E., Shamim M.S., Godwin J., Weisz D., Presser Aiden A., Lieberman Aiden E., Schermelleh L., Vannini A., Nasmyth K. MCPH1 inhibits condensin II during interphase by regulating its SMC2-Kleisin interface. eLife. 2021;10:e73348. https://doi.org/10.7554/eLife.73348
15. Jones S.K., Hawkins J.A., Johnson N.V., Jung C., Hu K., Rybarski J.R., Chen J.S., Doudna J.A., Press W.H., Finkelstein I.J. Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nat. Biotechnol. 2021;39(1):84-93. https://doi.org/10.1038/s41587-020-0646-5
16. Kabirova E., Nurislamov A., Shadskiy A., Smirnov A., Popov A., Salnikov P., Battulin N., Fishman V. Function and evolution of the loop extrusion machinery in animals. Int. J. Mol. Sci. 2023;24(5):5017. https://doi.org/10.3390/ijms24055017
17. Kim S., Kim D., Cho S.W., Kim J., Kim J.-S. Highly efficient RNAguided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24(6):1012-1019. https://doi.org/10.1101/gr.171322.113
18. Li D., Sun X., Yu F., Perle M.A., Araten D., Boeke J.D. Application of counter-selectable marker PIGA in engineering designer deletion cell lines and characterization of CRISPR deletion efficiency. Nucleic Acids Res. 2021;49(5):2642-2654. https://doi.org/10.1093/nar/gkab035
19. Minchell N.E., Keszthelyi A., Baxter J. Cohesin causes replicative DNA damage by trapping DNA topological stress. Mol. Cell. 2020; 78(4):739-751.e8. https://doi.org/10.1016/j.molcel.2020.03.013
20. Piazza A., Bordelet H., Dumont A., Thierry A., Savocco J., Girard F., Koszul R. Cohesin regulates homology search during recombinational DNA repair. Nat. Cell Biol. 2021;23(11):1176-1186. https://doi.org/10.1038/s41556-021-00783-x
21. Schimmel J., Kool H., van Schendel R., Tijsterman M. Mutational signatures of non-homologous and polymerase theta-mediated endjoining in embryonic stem cells. EMBO J. 2017;36(24):3634-3649. https://doi.org/10.15252/embj.201796948
22. Schwarzer W., Abdennur N., Goloborodko A., Pekowska A., Fudenberg G., Loe-Mie Y., Fonseca N.A., Huber W., Haering C.H., Mirny L., Spitz F. Two independent modes of chromatin organization revealed by cohesin removal. Nature. 2017;551(7678):51-56. https://doi.org/10.1038/nature24281
23. Stephenson A.A., Raper A.T., Suo Z. Bidirectional degradation of DNA cleavage products catalyzed by CRISPR/Cas9. J. Am. Chem. Soc. 2018;140(10):3743-3750. https://doi.org/10.1021/jacs.7b13050
24. Ström L., Lindroos H.B., Shirahige K., Sjögren C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell. 2004;16(6):1003-1015. https://doi.org/10.1016/j.molcel. 2004.11.026
25. Ünal E., Arbel-Eden A., Sattler U., Shroff R., Lichten M., Haber J.E., Koshland D. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell. 2004;16(6):991-1002. https://doi.org/10.1016/j.molcel.2004.11.027
26. Watry H.L., Feliciano C.M., Gjoni K., Takahashi G., Miyaoka Y., Conklin B.R., Judge L.M. Rapid, precise quantification of large DNA excisions and inversions by ddPCR. Sci. Rep. 2020;10(1):14896. https://doi.org/10.1038/s41598-020-71742-z
27. Wood J.L., Liang Y., Li K., Chen J. Microcephalin/MCPH1 associates with the Condensin II complex to function in homologous recombination repair. J. Biol. Chem. 2008;283(43):29586-29592. https://doi.org/10.1074/jbc.M804080200
28. Wu N., Yu H. The Smc complexes in DNA damage response. Cell Biosci. 2012;2(1):5. https://doi.org/10.1186/2045-3701-2-5
29. Wu X., Mondal G., Wang X., Wu J., Yang L., Pankratz V.S., Rowley M., Couch F.J. Microcephalin regulates BRCA2 and Rad51-associated DNA double-strand break repair. Cancer Res. 2009;69(13):5531- 5536. https://doi.org/10.1158/0008-5472.CAN-08-4834
30. Yunusova A., Smirnov A., Shnaider T., Lukyanchikova V., Afonnikova S., Battulin N. Evaluation of the OsTIR1 and AtAFB2 AID systems for genome architectural protein degradation in mammalian cells. Front. Mol. Biosci. 2021;8:757394. https://doi.org/10.3389/fmolb.2021. 757394