Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Effects of the auxin-dependent degradation of the cohesin and condensin complexes on the repair of distant DNA double-strand breaks in mouse embryonic stem cells

https://doi.org/10.18699/vjgb-24-65

Abstract

The SMC protein family, including cohesin and condensin I/II, plays a pivotal role in maintaining the topological structure of chromosomes and influences many cellular processes, notably the repair of double-stranded DNA breaks (DSBs). The cohesin complex impacts DSB repair by spreading γH2AX signal and containing DNA ends in close proximity by loop extrusion. Cohesin supports DNA stability by sister chromatid cohesion during the S/G2 phase, which limits DNA end mobility. Cohesin knockdown was recently shown to stimulate frequencies of genomic deletions produced by distant paired DSBs, but does not affect DNA repair of a single or close DSBs. We examined how auxin-inducible protein degradation of Rad21 (cohesin) or Smc2 (condensins I+II) changes the frequencies of rearrangements between paired distant DSBs in mouse embryonic stem cells (mESCs). We used Cas9 RNP nucleofection to generate deletions and inversions with high efficiency without additional selection. We determined optimal Neon settings and deletion appearance timings. Two strategies for auxin addition were tested (4 independent experiments in total). We examined deletion/inversion frequencies for two regions spanning 3.5 and 3.9 kbp in size. Contrary to expectations, in our setting, Rad21 depletion did not increase deletion/inversion frequencies, not even for the region with an active Ctcf boundary. We actually observed a 12 % decrease in deletions (but not inversions). At the same time, double condensin depletion (Smc2 degron line) demonstrated high biological variability between experiments, complicating the analysis, and requires additional examination in the future. TIDE analysis revealed that editing frequency was consistent (30–50 %) for most experiments with a minor decrease after auxin addition. In the end, we discuss the Neon/ddPCR method for deletion generation and detection in mESCs.

About the Authors

A. V. Smirnov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. S. Ryzhkova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. M. Yunusova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Arnould C., Rocher V., Finoux A.-L., Clouaire T., Li K., Zhou F., Caron P., Mangeot P.E., Ricci E.P., Mourad R., Haber J.E., Noordermeer D., Legube G. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature. 2021;590(7847):660-665. DOI 10.1038/s41586-021-03193-z

2. Arnould C., Rocher V., Saur F., Bader A.S., Muzzopappa F., Collins S., Lesage E., Le Bozec B., Puget N., Clouaire T., Mangeat T., Mourad R., Ahituv N., Noordermeer D., Erdel F., Bushell M., Marnef A., Legube G. Chromatin compartmentalization regulates the response to DNA damage. Nature. 2023;623(7985):183-192. DOI 10.1038/s41586-023-06635-y

3. Aymard F., Bugler B., Schmidt C.K., Guillou E., Caron P., Briois S., Iacovoni J.S., Daburon V., Miller K.M., Jackson S.P., Legube G. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 2014; 21(4):366-374. DOI 10.1038/nsmb.2796

4. Baergen A.K., Jeusset L.M., Lichtensztejn Z., McManus K.J. Diminished condensin gene expression drives chromosome instability that may contribute to colorectal cancer pathogenesis. Cancers (Basel ). 2019;11(8):1066. DOI 10.3390/cancers11081066

5. Brinkman E.K., Chen T., Amendola M., van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42(22):e168. DOI 10.1093/nar/gku936

6. Brinkman E.K., Chen T., de Haas M., Holland H.A., Akhtar W., van Steensel B. Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks. Mol. Cell. 2018;70(5):801-813.e6. DOI 10.1016/j.molcel.2018.04.016

7. Canver M.C., Bauer D.E., Dass A., Yien Y.Y., Chung J., Masuda T., Maeda T., Paw B.H., Orkin S.H. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 2014;289(31):21312-21324. DOI 10.1074/jbc.M114.564625

8. Chang H.-Y., Lee C.-Y., Lu C.-H., Lee W., Yang H.-L., Yeh H.-Y., Li H.-W., Chi P. Microcephaly family protein MCPH1 stabilizes RAD51 filaments. Nucleic Acids Res. 2020;48(16):9135-9146. DOI 10.1093/nar/gkaa636

9. Chenouard V., Leray I., Tesson L., Remy S., Allan A., Archer D., Caulder A., Fortun A., Bernardeau K., Cherifi Y., Teboul L., David L., Anegon I. Excess of guide RNA reduces knockin efficiency and drastically increases on-target large deletions. iScience. 2023;26(4): 106399. DOI 10.1016/j.isci.2023.106399

10. Choi E.-H., Yoon S., Park K.-S., Kim K.P. The homologous recombination machinery orchestrates post-replication DNA repair during self-renewal of mouse embryonic stem cells. Sci. Rep. 2017;7(1): 11610. DOI 10.1038/s41598-017-11951-1

11. Dobbs F.M., van Eijk P., Fellows M.D., Loiacono L., Nitsch R., Reed S.H. Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq. Nat. Commun. 2022;13(1): 3989. DOI 10.1038/s41467-022-31702-9

12. Dyson S., Segura J., Martínez-García B., Valdés A., Roca J. Condensin minimizes topoisomerase II-mediated entanglements of DNA in vivo. EMBO J. 2021;40(1):e105393. DOI 10.15252/embj.2020105393

13. Gelot C., Guirouilh-Barbat J., Le Guen T., Dardillac E., Chailleux C., Canitrot Y., Lopez B.S. The cohesin complex prevents the end joining of distant DNA double-strand ends. Mol. Cell. 2016;61(1): 15-26. DOI 10.1016/j.molcel.2015.11.002

14. Houlard M., Cutts E.E., Shamim M.S., Godwin J., Weisz D., Presser Aiden A., Lieberman Aiden E., Schermelleh L., Vannini A., Nasmyth K. MCPH1 inhibits condensin II during interphase by regulating its SMC2-Kleisin interface. eLife. 2021;10:e73348. DOI 10.7554/eLife.73348

15. Jones S.K., Hawkins J.A., Johnson N.V., Jung C., Hu K., Rybarski J.R., Chen J.S., Doudna J.A., Press W.H., Finkelstein I.J. Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nat. Biotechnol. 2021;39(1):84-93. DOI 10.1038/s41587-020-0646-5

16. Kabirova E., Nurislamov A., Shadskiy A., Smirnov A., Popov A., Salnikov P., Battulin N., Fishman V. Function and evolution of the loop extrusion machinery in animals. Int. J. Mol. Sci. 2023;24(5):5017. DOI 10.3390/ijms24055017

17. Kim S., Kim D., Cho S.W., Kim J., Kim J.-S. Highly efficient RNAguided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24(6):1012-1019. DOI 10.1101/gr.171322.113

18. Li D., Sun X., Yu F., Perle M.A., Araten D., Boeke J.D. Application of counter-selectable marker PIGA in engineering designer deletion cell lines and characterization of CRISPR deletion efficiency. Nucleic Acids Res. 2021;49(5):2642-2654. DOI 10.1093/nar/gkab035

19. Minchell N.E., Keszthelyi A., Baxter J. Cohesin causes replicative DNA damage by trapping DNA topological stress. Mol. Cell. 2020; 78(4):739-751.e8. DOI 10.1016/j.molcel.2020.03.013

20. Piazza A., Bordelet H., Dumont A., Thierry A., Savocco J., Girard F., Koszul R. Cohesin regulates homology search during recombinational DNA repair. Nat. Cell Biol. 2021;23(11):1176-1186. DOI 10.1038/s41556-021-00783-x

21. Schimmel J., Kool H., van Schendel R., Tijsterman M. Mutational signatures of non-homologous and polymerase theta-mediated endjoining in embryonic stem cells. EMBO J. 2017;36(24):3634-3649. DOI 10.15252/embj.201796948

22. Schwarzer W., Abdennur N., Goloborodko A., Pekowska A., Fudenberg G., Loe-Mie Y., Fonseca N.A., Huber W., Haering C.H., Mirny L., Spitz F. Two independent modes of chromatin organization revealed by cohesin removal. Nature. 2017;551(7678):51-56. DOI 10.1038/nature24281

23. Stephenson A.A., Raper A.T., Suo Z. Bidirectional degradation of DNA cleavage products catalyzed by CRISPR/Cas9. J. Am. Chem. Soc. 2018;140(10):3743-3750. DOI 10.1021/jacs.7b13050

24. Ström L., Lindroos H.B., Shirahige K., Sjögren C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell. 2004;16(6):1003-1015. DOI 10.1016/j.molcel. 2004.11.026

25. Ünal E., Arbel-Eden A., Sattler U., Shroff R., Lichten M., Haber J.E., Koshland D. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell. 2004;16(6):991-1002. DOI 10.1016/j.molcel.2004.11.027

26. Watry H.L., Feliciano C.M., Gjoni K., Takahashi G., Miyaoka Y., Conklin B.R., Judge L.M. Rapid, precise quantification of large DNA excisions and inversions by ddPCR. Sci. Rep. 2020;10(1):14896. DOI 10.1038/s41598-020-71742-z

27. Wood J.L., Liang Y., Li K., Chen J. Microcephalin/MCPH1 associates with the Condensin II complex to function in homologous recombination repair. J. Biol. Chem. 2008;283(43):29586-29592. DOI 10.1074/jbc.M804080200

28. Wu N., Yu H. The Smc complexes in DNA damage response. Cell Biosci. 2012;2(1):5. DOI 10.1186/2045-3701-2-5

29. Wu X., Mondal G., Wang X., Wu J., Yang L., Pankratz V.S., Rowley M., Couch F.J. Microcephalin regulates BRCA2 and Rad51-associated DNA double-strand break repair. Cancer Res. 2009;69(13):5531- 5536. DOI 10.1158/0008-5472.CAN-08-4834

30. Yunusova A., Smirnov A., Shnaider T., Lukyanchikova V., Afonnikova S., Battulin N. Evaluation of the OsTIR1 and AtAFB2 AID systems for genome architectural protein degradation in mammalian cells. Front. Mol. Biosci. 2021;8:757394. DOI 10.3389/fmolb.2021. 757394


Review

Views: 607


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)