A new leaf pubescence gene, Hl1th, introgressed into bread wheat from Thinopyrum ponticum and its phenotypic manifestation under homoeologous chromosomal substitutions
https://doi.org/10.18699/vjgb-24-67
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Full Text:
Abstract
Blue-grain lines were created on the basis of the spring bread wheat variety Saratovskaya 29 (S29) with chromosome 4B or 4D replaced with chromosome 4Th from Thinopyrum ponticum. The leaf pubescence of the two lines differs from S29 and from each other. In this work, we studied the effect of these substitutions on the manifestation of this trait. To quantify pubescence, the LHDetect2 program was used to determine trichome length and number on the leaf fold microphotographs. The key gene Hl1 on chromosome 4B and another unidentified gene with a weak effect determine the leaf pubescence of the recipient S29. Their interaction leads to the formation of trichomes of up to 300 microns in length. Replacement of both copies of chromosome 4B with two copies of wheatgrass chromosome 4Th modifies leaf pubescence in line S29_4Th(4B) so that the leaf pubescence characteristic of S29 becomes more sparse, and trichomes of up to 600–700 µm in length are formed. Additionally, we described modification of pubescence in the substitution line S29_4Th(4D) where chromosome 4D that does not carry any pubescence gene was replaced. Under this substitution, trichomes of up to 400 µm in length were formed and the average length of trichomes on the underside of the leaf was reduced. The replacement of the Hl1 gene in the lines was also confirmed by the allelic state of the linked microsatellite marker Xgwm538. Thus, as a result of the studies, a new leaf pubescence gene introgressed from Th. ponticum into bread wheat was identified. We designated it as Hl1th. For the purpose of selection, we propose to use the unlicensed informative microsatellite markers Xgwm538 and Xgwm165, allowing chromosomes 4A, 4B, 4D and 4Th to be distinguished.
Keywords
About the Authors
A. V. SimonovRussian Federation
Novosibirsk
E. I. Gordeeva
Russian Federation
Novosibirsk
M. A. Genaev
Russian Federation
Novosibirsk
W. Li
Russian Federation
Novosibirsk
I. O. Bulatov
Russian Federation
Novosibirsk
T. A. Pshenichnikova
Russian Federation
Novosibirsk
References
1. Adonina I.G., Timonova E.M., Salina E.A. Introgressive hybridization of common wheat: results and prospects. Russ. J. Genet. 2021; 57(4):390-407. https://doi.org/10.1134/S1022795421030029
2. Brooks S.A., See D., Brown-Guedira G. SNP-based improvement of a microsatellite marker associated with Karnal bunt resistance in wheat. Crop Sci. 2006;46(4):1467-1470. https://doi.org/10.2135/cropsci2005.05-0065
3. Dobrovolskaya O.B., Pshenichnikova T.A., Arbuzova V.S., Lohwasser U., Röder M.S., Börner A. Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica. 2007;155:285-293. https://doi.org/10.1007/s10681-006-9329-7
4. Doroshkov A.V., Arsenina S.I., Pshenichnikova T.A., Afonnikov D.A. The use of computer-based image processing to leaf hairiness analysis in wheat Triticum aestivum L. Informatsionniy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2009;13(1):218-226 (in Russian)
5. Doroshkov A.V., Afonnikov D.A., Pshenichnikova T.A. Genetic analysis of leaf pubescence in isogenic lines of bread wheat Novosibirskaya 67. Russ. J. Genet. 2014;50:153-160. https://doi.org/10.1134/S102279 5413120028
6. Doroshkov A.V., Afonnikov D.A., Dobrovolskaya O.B., Pshenichnikova T.A. Interactions between leaf pubescence genes in bread wheat as assessed by high throughput phenotyping. Euphytica. 2016;207: 491-500. https://doi.org/10.1007/s10681-015-1520-2
7. Hamaoka N., Yasui H., Yamagata Y., Inoue Y., Furuya N., Araki T., Ueno O., Yoshimura A. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice. Rice. 2017;10(1):20. https://doi.org/10.1186/s12284-017-0158-1
8. Genaev M.A., Doroshkov A.V., Morozova E.V., Pshenichnikova T.A., Afonnikov D.A. WheatPGE: A system for analysis of relationships among the phenotype, genotype, and environment in wheat. Russ. J. Genet. Appl. Res. 2012a;2(3):262-269. https://doi.org/10.1134/ S2079059712030045
9. Genaev M.A., Doroshkov A.V., Pshenichnikova T.A., Kolchanov N.A., Afonnikov D.A. Extracting quantitative characteristics of wheat leaf hairiness using image processing technique. Planta. 2012b;236: 1943-1954. https://doi.org/10.1007/s00425-012-1751-6
10. Gonchar-Zaykin P.P., Chertov V.G. Nadstroyka k Excel dlya statisticheskoy ocenki i analiza rezul’tatov polevyh i laboratornyh opytov [Elektronnyy resurs]. Available at: URL: http://vniioh.ru/nadstrojkak-excel-dlya-statisticheskoj-ocenki-i-analiza-rezultatov-polevyx-ilaboratornyx-opytov (Accessed 26.09.2021) (in Russian)
11. Gordeeva E., Badaeva E., Yudina R., Shchukina L., Shoeva O., Khlestkina E. Marker-assisted development of a blue-grained substitution line carrying the Thinopyrum ponticum chromosome 4Th(4D) in the spring bread wheat Saratovskaya 29 background. Agronomy. 2019;9:723. https://doi.org/10.3390/agronomy9110723
12. Gordeeva E., Shoeva O., Mursalimov S., Adonina I., Khlestkina E. Fine points of marker-assisted pyramiding of anthocyanin biosynthesis regulatory genes for the creation of black-grained bread wheat (Triticum aestivum L.) lines. Agronomy. 2022;12:2934. https://doi.org/10.3390/agronomy12122934
13. Kaur J., Kariyat R. Role of trichomes in plant stress biology. In: NúñezFarfán J., Valverde P. (Eds.). Evolutionary Ecology of Plant-Herbivore Interaction. Springer, 2020;15-35. https://doi.org/10.1007/978-3-030-46012-9_2
14. Korzun V., Malyshev S., Pickering R.A., Börner A. RFLP mapping of a gene for hairy leaf sheath using a recombinant line from Hordeum vulgare L.×Hordeum bulbosum L. cross. Genome. 1999;42(5):960- 963. https://doi.org/10.1139/g99-021
15. Kroupin P.Yu., Divashuk M.G., Fesenko I.A., Karlov G.I. Adaptation of microsatellite SSR-markers of wheat for the genome analysis of wheatgrass, intermediate wheatgrass, and wheat-wheatgrass hybrids. Izvestiya Timiryazevskoy Sel’skohozjajstvennoy Akademii = Izvestiya of Timiryazev Agricultural Academy. 2011;3:49-57 (in Russian)
16. Kroupin P.Yu., Divashuk M.G., Karlov G.I. Gene resources of perennial wild cereals involved in breeding to improve wheat crop. Sel’skokhozyaistvennaya Biologiya = Agricultural Biology. 2019; 54(3):409-425. https://doi.org/10.15389/agrobiology.2019.3.409eng
17. Leonova I.N., Röder M.S., Kalinina N.P., Budashkina E.B. Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum × Triticum timopheevii introgression lines. Russ. J. Genet. 2008;44:1431-1437. https://doi.org/10.1134/S1022795408120077
18. Li H., Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J. Genet. Genomics. 2009;36(9):557-565. https://doi.org/10.1016/S1673-8527(08)60147-2
19. Li H., Conner R.L., Chen Q., Li H., Laroche A., Graf R.J., Kuzyk A.D. The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat. Genome. 2004;47(1):215-223. https://doi.org/10.1139/g03-095
20. Li M., Wang Y., Liu X., Li X., Wang H., Bao Y. Molecular cytogenetic identification of a novel wheat - Thinopyrum ponticum 1JS (1B) substitution line resistant to powdery mildew and leaf rust. Front. Plant Sci. 2021;12:727734. https://doi.org/10.3389/fpls.2021.727734
21. Maistrenko O.I. Identification and localization of genes controlling the pubescence of the leaf of young soft wheat plants. Genetika (Moscow). 1976;12(1):5-15 (in Russian)
22. McIntosh R.A., Devos K.M., Dubcovsky J., Morris C.F., Rogers W.J. Catalogue of Gene Symbols for Wheat. Supplement. 2003. Available at: https://wheat.pw.usda.gov/ggpages/wgc/2003upd.html
23. Niu Z., Klindworth D.L., Yu G., Friesen T.L., Chao S., Jin Y., Cai X., Ohm J.-B., Rasmussen J.B., Xu S.S. Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor. Appl. Genet. 2014;127(4):969- 980. https://doi.org/10.1007/s00122-014-2272-4
24. Osipova S.V., Rudikovskii A.V., Permyakov A.V., Rudikovskaya E.G., Permyakova M.D., Verkhoturov V.V., Pshenichnikova T.A. Physiological responses of wheat (Triticum aestivum L.) lines with genetically different leaf pubescence. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(8):813-820. https://doi.org/10.18699/VJ20.678
25. Pershina L.A., Trubacheeva N.V., Shumny V.K., Badaeva E.D. Development and characterization of a line with substitution of chromosome 4B of wheat Triticum aestivum L. on chromosome 4Hmar of wild barley Hordeum marinum ssp. gussoneanum (4x). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(6):545-552. https://doi.org/10.18699/VJGB-23-66
26. Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995;91(6-7):1001-1007. https://doi.org/10.1007/BF00223912
27. Pshenichnikova T.A., Lapochkina I.F., Shchukina L.V. The inheritance of morphological and biochemical traits introgressed into common wheat (Triticum aestivum L.) from Aegilops speltoides Tausch. Genet. Resour. Crop Evol. 2007;54(2):287-293. https://doi.org/10.1007/s10722-005-4499-z
28. Pshenichnikova T.A., Khlestkina E.K., Shchukina L.V., Simonov A.V., Chistyakova A.K., Morozova E.V., Landjeva S., Karceva T., Börner A. Exploitation of Saratovskaya 29 (Janetzkis Probat 4D*7A) substitution and derivate lines for comprehensive phenotyping and molecular mapping of quantitative trait loci (QTL). In: EWAC Newsletter 2012, Proc. of the 15th International EWAC Conference, 7-11 November 2011, Novi Sad, Serbia. 2012;19-22
29. Pshenichnikova T.A., Doroshkov A.V., Simonov A.V., Afonnikov D.A., Börner A. Diversity of leaf pubescence in bread wheat and relative species. Genet. Resour. Crop Evol. 2017;64(7):1761-1773. https://doi.org/10.1007/s10722-016-0471-3
30. Pshenichnikova T.A., Doroshkov A.V., Osipova S.V., Permyakov A.V., Permyakova M.D., Efimov V.M., Afonnikov D.A. Quantitative characteristics of pubescence in wheat (Triticum aestivum L.) are associated with photosynthetic parameters under conditions of normal and limited water supply. Planta. 2019;249(3):839-847. https://doi.org/10.1007/s00425-018-3049-9
31. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. A microsatellite map of wheat. Genetics. 1998;149(4):2007-2023. https://doi.org/10.1093/genetics/149.4.2007
32. Saade S., Kutlu B., Draba V., Förster K., Schumann E., Tester M., Pillen K., Maurer A. A donor-specific QTL, exhibiting allelic variation for leaf sheath hairiness in a nested association mapping population, is located on barley chromosome 4H. PloS One. 2017;12(12): e0189446. https://doi.org/10.1371/journal.pone.0189446
33. Salem K.F.M., Mattar M.Z. Identification of microsatellite alleles for salt tolerance at seedling stage in wheat (Triticum aestivum L.). Life Sci. J. 2014;11(12s):1064-1073
34. Schreuder M.D.J., Brewer C.A., Heine C. Modelled influences of nonexchanging trichomes on leaf boundary layers and gas exchange. J. Theor. Biol. 2001;210:23-32. https://doi.org/10.1006/jtbi.2001.2285
35. Shchukina L.V., Pshenichnikova T.A., Khlestkina E.K., Misheva S., Kartseva T., Abugalieva A., Börner A. Chromosomal location and mapping of quantitative trait locus determining technological parameters of grain and flour in strong-flour bread wheat cultivar Saratovskaya 29. Cereal Res. Commun. 2018;46(4):628-638. https://doi.org/10.1556/0806.46.2018.047
36. Shchukina L.V., Simonov A.V., Demenkova M.A., Klykov A.G., Shamanin V.P., Pozherukova V.E., Lepekhov S.B., Chebatareva M.V., Petin V.A., Börner A., Pshenichnikova T.A. Increased grain protein and gluten contents of bread wheat caused by introgression of a T. timopheevii segment into chromosome 2A. Euphytica. 2022;218: 170. DOI.10.1007/s10681-022-03121-w
37. Shvachko N.A., Semilet T.V., Tikhonova N.G. Trichomes in higher plants: homological series in hereditary variability and molecular genetic mechanisms. Russ. J. Genet. 2020;56(11):1359-1370. https://doi.org/10.1134/S1022795420110083
38. Simonov A.V., Smirnova O.G., Genaev M.A., Pshenichnikova T.A. The identification of a new gene for leaf pubescence introgressed into bread wheat from Triticum timopheevii Zhuk. and its manifestation in a different genotypic background. Plant Genet. Resour. 2021;19(3):238-244. https://doi.org/10.1017/S1479262121000277
39. Singh A., Pallavi J.K., Gupta P., Prabhu K.V. Identification of microsatellite markers linked to leaf rust resistance gene Lr25 in wheat. J. Appl. Genet. 2012;53(1):19-25. https://doi.org/10.1007/s13353- 011-0070-0
40. Sukhwinder-Singh, Brown-Guedira G.L., Grewal T.S.,·Dhaliwal H.S., Nelson J.C., Singh H., Gill B.S. Mapping of a resistance gene effective against Karnal bunt pathogen of wheat. Theor. Appl. Genet. 2003;106(2):287-292. https://doi.org/10.1007/s00122-002-1112-0
41. Taketa S., Chang C.L., Ishii M., Takeda K. Chromosome arm location of the gene controlling leaf pubescence of a Chinese local wheat cultivar Hong-mang-mai. Euphytica. 2002;125(2):141-147. https://doi.org/10.1023/A:1015812907111
42. Vavilov N.I. Scientific Foundations of Wheat Breeding. Moscow-Leningrad: Selkhozgiz Publ., 1935;70-87 (in Russian)
43. Wan H., Yang Y., Li J., Zhang Z., Yang W. Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat. Euphytica. 2015; 205:275-285. https://doi.org/10.1007/s10681-015-1457-5
44. Wang S., Wang C., Wang Y., Wang Y., Chen C., Ji W. Molecular cytogenetic identification of two wheat - Thinopyrum ponticum substitution lines conferring stripe rust resistance. Mol. Breed. 2019;39:143. https://doi.org/10.1007/s11032-019-1053-9
45. Yang G., Deng P., Ji W., Fu S., Li H., Li B., Li Zh., Zheng Q. Physical mapping of a new powdery mildew resistance locus from Thinopyrum ponticum chromosome 4AgS. Front. Plant Sci. 2023;14:1131205. https://doi.org/10.3389/fpls.2023.1131205
46. Zeven A.C. Wheats with purple and blue grains: a review. Euphytica. 1991;56:243-258
47. Zheng Q., Li B., Mu S., Zhou H., Li Z. Physical mapping of the bluegrained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome. 2006;49(9):1109-1114. https://doi.org/10.1139/g06-073