1. Abdullin Sh.R., Nikulin A.Yu., Bagmet V.B., Nikulin V.Yu., Goncharov A.A. New cyanobacterium Aliterella vladivostokensis sp. nov. (Aliterellaceae, Chroococcidiopsidales), isolated from temperate monsoon climate zone (Vladivostok, Russia). Phytotaxa. 2021;517: 221-233. https://doi.org/10.11646/phytotaxa.527.3.7
2. Abou-Shanab R.A.I., El-Dalatony M.M., El-Sheekh M.M. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol. Bioprocess Eng. 2014;19:510-518. https://doi.org/10.1007/s12257- 013-0485-z
3. Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974;19:716-723. https://doi.org/10.1109/TAC.1974.1100705
4. Andersen R.A. Algal Culturing Techniques. New York: Elsevier Acad. Press, 2005
5. Andreyeva V.M. Soil and Aerophilic Green Algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). St. Petersburg: Nauka Publ., 1998 (in Russian)
6. Banskota A.H., Hui J.P.M., Jones A., McGinn P.J. Characterization of neutral lipids of the oleaginous alga Micractinum inermum. Molecules. 2024;29:359. https://doi.org/10.3390/molecules29020359
7. Bonfield J.K., Smith K.F., Staden R. A new DNA sequence assembly program. Nucleic Acids Res. 1995;23(24):4992-4999. https://doi.org/10.1093/nar/23.24.4992
8. Bouarab L., Dauta A., Loudiki M. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration. Water Res. 2004;38(11):2706-2712. https://doi.org/10.1016/j.watres.2004.03.021
9. Caisová L., Marin B., Melkonian M. A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist. 2013;164(4):482-496. https://doi.org/10.1016/j.protis.2013.04.005
10. Chae H., Lim S., Kim H.S., Choi H.G., Kim J.H. Morphology and phylogenetic relationships of Micractinium (Chlorellaceae, Trebouxiophyceae) taxa, including three new species from Antarctica. Algae. 2019;34(4):267-275. https://doi.org/10.4490/algae.2019.34.10.15
11. Coleman A.W. The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist. 2000;151(1):1-9. https://doi.org/10.1078/1434-4610-00002
12. Coleman A.W. Nuclear rRNA transcript processing versus internal transcribed spacer secondary structure. Trends Genet. 2015;31(3):157- 163. https://doi.org/10.1016/j.tig.2015.01.002
13. Darienko T., Pröschold T. Reevaluation and discovery of new species of the rare genus Watanabea and establishment of Massjukichlorella gen. nov. (Trebouxiophyceae, Chlorophyta) using an integrative approach. J. Phycol. 2019;55:493-499. https://doi.org/10.1111/jpy.12830
14. Darriba D., Taboada G., Doallo R., Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 2012;9: 772. https://doi.org/10.1038/nmeth.2109
15. Darty K., Denise A., Ponty Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009;25:1974- 1975. https://doi.org/10.1093/bioinformatics/btp250
16. Dickinson K.E., Lalonde C.G., McGinn P.J. Effects of spectral light quality and carbon dioxide on the physiology of Micractinium inermum: growth, photosynthesis, and biochemical composition. J. Appl. Phycol. 2019;31:3385-3396. https://doi.org/10.1007/s10811-019-01880-z
17. Echt C.S., Erdahl L.A., McCoy T.J. Genetic segregation of random amplified polymorphic DNA in diploid cultivated alfalfa. Genome. 1992;35(1):84-87. https://doi.org/10.1139/g92-014
18. Fernandes B., Teixeira J., Dragone G., Vicente A.A., Kawano S., Bišová K., Vítová M. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour. Technol. 2013;144:268-274. https://doi.org/10.1016/j.biortech.2013.06.096
19. Fresenius G. Beiträge zur Kenntniss mikrokopischer Organismen. Abh. Senckenberg. Naturforsch. Ges. 1858;2(2):211-242. https://doi.org/10.5962/bhl.title.2137
20. Galtier N., Gouy M., Gautier C. Seaview and phylo-win: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 1996;12:543-548. https://doi.org/10.1093/bioinformatics/12.6.543
21. Ganuza E., Sellers C.E., Bennett B.W., Carney L.T. A novel treatment protects Chlorella at commercial scale from the predatory bacterium Vampirovibrio chlorellavorus. Front. Microbiol. 2016;7:188348. https://doi.org/10.3389/fmicb.2016.00848
22. Goka K., Yokoyama J., Une Y., Kuroki T., Suzuki K., Nakahara M., Kobayashi A., Inaba S., Mizutani T., Hyatt A.D. Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Mol. Ecol. 2009;18(23):4757-4774. https://doi.org/10.1111/j.1365-294X.2009.04384.x
23. Gollerbah M.M., Shtina E.A. Soil Algae. St. Petersburg: Nauka Publ., 1969 (in Russian)
24. Guiry M.D., Guiry G.M. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. (Cited on April 15, 2024). Available from: http://www.algaebase.org
25. Ho S.H., Chen C.Y., Chang J.S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 2012;113:244-252. https://doi.org/10.1016/j.biortech.2011.11.133
26. Hoef-Emden K., Melkonian M. Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and mor- phology provides insights into a long-hidden dimorphism. Protist. 2003;154:371-409. https://doi.org/10.1078/143446103322454130
27. Hong J.W., Jo S.-W., Cho H.-W., Nam S.W., Shin W., Park K.M., Lee K.I., Yoon H.-S. Phylogeny, morphology, and physiology of Micractinium strains isolated from shallow ephemeral freshwater in Antarctica. Phycol. Res. 2015;63:212-218. https://doi.org/10.1111/pre.12097
28. Hoshina R., Fujiwara Y. Molecular characterization of Chlorella cultures of the National Institute for Environmental Studies culture collection with description of Micractinium inermum sp. nov., Didymogenes sphaerica sp. nov., and Didymogenes soliella sp. nov. (Chlorellaceae, Trebouxiophyceae). Phycol. Res. 2013;31:124-132. https://doi.org/10.1111/pre.12010
29. Huelsenbeck J.P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754-755. https://doi.org/10.1093/bioinformatics/17.8.754
30. Kim I., Yang H.-M., Park C.W., Yoon I.-H., Seo B.-K., Kim E.-K., Ryu B.-G. Removal of radioactive cesium from an aqueous solution via bioaccumulation by microalgae and magnetic separation. Sci. Rep. 2019;9:10149. https://doi.org/10.1038/s41598-019-46586-x
31. Knothe G. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci. 2009;2:2759-2766. https://doi.org/10.1039/B903941D
32. Komárek J., Fott B. Chlorophyceae (Grünalgen). Ordnung Chlorococcales. In: Huber-Pestalozzi G. (Ed.) Das Phytoplankton des Süsswassers. 7. Teil. 1. Stuttgart: Schweizerbart‘sche Verlagsbuchhandlung, 1983;1-1044
33. Komárek J., Kaštovský J., Mareš J., Johansen J.R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia. 2014;86(4):295-335
34. Kozlov A.M., Darriba D., Flouri T., Morel B., Stamatakis A. RAxMLNG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453-4455. https://doi.org/10.1093/bioinformatics/btz305
35. Krivina E., Sinetova M., Savchenko T., Degtyaryov E., Tebina E., Temraleeva A. Micractinium lacustre and M. thermotolerans spp. nov. (Trebouxiophyceae, Chlorophyta): taxonomy, temperature-dependent growth, photosynthetic characteristics and fatty acid composition. Algal Res. 2023;71:103042. https://doi.org/10.1016/j.algal.2023.103042
36. López-García P., Philippe H., Gail F., Moreira D. Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc. Natl. Acad. Sci. USA. 2003;100:697-702. https://doi.org/10.1073/pnas.0235779100
37. Luo W., Krienitz L., Pflugmacher S., Walz N. Genus and species concept in Chlorella and Micractinium (Chlorophyta, Chlorellaceae): genotype versus phenotypical variability under ecosystem conditions. SIL Proceedings. 2005;29(1):170-173. https://doi.org/10.1080/03680770.2005.11901988
38. Luo W., Pflugmacher S., Pröschold T., Walz N., Krienitz L. Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist. 2006;157:315-333. https://doi.org/10.1016/j.protis.2006.05.006
39. Marin B., Klingberg M., Melkonian M. Phylogenetic relationships among the Cryptophyta: analyses of nuclear-encoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist. 1998;149:265-276. https://doi.org/10.1016/S1434-4610(98)70033-1
40. Marin B., Palm A., Klingberg M., Melkonian M. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist. 2003;154:99-145. https://doi.org/10.1078/143446103764928521
41. McFadden G.I., Melkonian M. Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia. 1986; 25:551-557. https://doi.org/10.2216/i0031-8884-25-4-551.1
42. Mikhailyuk T., Lukešová A., Glaser K., Holzinger A., Obwegeser S., Nyporko S., Friedl T., Karsten U. New taxa of streptophyte algae (Streptophyta) from terrestrial habitats revealed using an integrative approach. Protist. 2018;169:406-431. https://doi.org/10.1016/j.protis.2018.03.002
43. Nikulin V.Yu., Nikulin A.Yu., Gontcharov A.A., Bagmet V.B., Abdullin Sh.R. Oogamochlamys kurilensis sp. nov. (Chlorophyta, Volvocales) from the soils of Iturup Island (Sakhalin Region, Russia). Plants. 2023;12:3350. https://doi.org/10.3390/plants12193350
44. Onay M., Sonmez C.A., Oktem H., Yücel M. Thermo-resistant green microalgae for effective biodiesel production: isolation and characterization of unialgal species from geothermal flora of Central Anatolia. Bioresour. Technol. 2014;169:62-71. https://doi.org/10.1016/j.biortech.2014.06.078
45. Ota S., Morita A., Ohnuki S., Hirata A., Sekida S., Okuda K., Ohya Y., Kawano S. Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Sci. Rep. 2018;8:5617. https://doi.org/10.1038/s41598-018-23854-w
46. Park S., Kim J., Yoon Y., Park Y., Lee T. Blending water-and nutrientsource wastewaters for cost-effective cultivation of high lipid content microalgal species Micractinium inermum NLP-F014. Bioresourc. Technol. 2015;198:388-394. https://doi.org/10.1016/j.biortech.2015.09.038
47. Piligaev A.V., Sorokina K.N., Shashkov M.V., Parmon V.N. Screening and comparative metabolic profiling of high lipid content microalgae strains for application in wastewater treatment. Bioresour. Technol. 2018;250:538-547. https://doi.org/10.1016/j.biortech.2017.11.063
48. Pröschold T., Darienko T., Silva P.C., Reisser W., Krienitz L. The systematics of “Zoochlorella” revisited employing an integrative approach. Environ. Microbiol. 2011;13:350-364. https://doi.org/10.1111/j.1462-2920.2010.02333.x
49. Quintas-Nunes F., Brandão P.R., Barreto Crespo M.T., Glick B.R., Nascimento F.X. Plant growth promotion, phytohormone production and genomics of the rhizosphere-associated microalga, Micractinium rhizosphaerae sp. nov. Plants. 2023;12:651. https://doi.org/10.3390/ plants12030651
50. Rambaut A. FigTree v.1.4.4. 2018. http://tree.bio.ed.ac.uk/software/figtree (Access date: 01.03.2024)
51. Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901-904. https://doi.org/10.1093/sysbio/syy032
52. Roleda M.Y., Slocombe S.P., Leakey R.J., Day J.G., Bell E.M., Stanley M.S. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour. Technol. 2013; 129:439-449. https://doi.org/10.1016/j.biortech.2012.11.043
53. Schlӧsser U.G. Additions to the Culture collection of algae since 1994. Bot. Acta. 1997;110:424-429. https://doi.org/10.1111/j.1438-8677.1997.tb00659.x
54. Shi M., Wei H., Chen Q., Wang X., Zhou W., Liu J. Exploring an isolate of the oleaginous alga Micractinium inermum for lipid production: molecular characterization and physiochemical analysis under multiple growth conditions. J. Appl. Phycol. 2019;31:1035-1046. https://doi.org/10.1007/s10811-018-1653-5
55. Smith R.T., Bangert K., Wilkinson S.J., Gilmour D.J. Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum. Biomass Bioenergy. 2015;82:73-86. https://doi.org/10.1016/j.biombioe.2015.04.023
56. Stamatakis A., Hoover P., Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008;57:758-771. https://doi.org/10.1080/10635150802429642
57. Starr R.C., Zeikus J.A. UTEX - the culture collection of algae at the University of Texas at Austin. 1993 list of cultures. J. Phycol. 1993;29:1-106. https://doi.org/10.1111/j.0022-3646.1993.00001.x
58. Sydney T., Marshall-Thompson J.-A., Kapoore R.V., Vaidyanathan S., Pandhal J., Fairclough J.P.A. The effect of high-intensity ultraviolet light to elicit microalgal cell lysis and enhance lipid extraction. Metabolites. 2018;8:65. https://doi.org/10.3390/metabo8040065
59. Weiss R.L. Fine structure of the snow alga (Chlamydomonas nivalis) and associated bacteria. J. Phycol. 1983;19:200-204. https://doi.org/10.1111/j.0022-3646.1983.00200.x
60. White T.J., Bruns T.D., Lee S.B., Taylor J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols - A Guide to Methods and Application. San Diego, CA, USA: Acad. Press, 1990;315-322
61. Wijffels R.H., Barbosa M.J. An outlook on microalgal biofuels. Science. 2010;329:796-799. https://doi.org/10.1126/science.1189003
62. Wolf M., Chen S., Song J., Ankenbrand M., Müller T. Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences - a proof of concept. PLoS One. 2013;8(6):e66726. https://doi.org/10.1371/journal.pone.0066726
63. Zhan J., Hong Y., Hu H. Effects of nitrogen sources and C/N ratios on the lipid producing potential of Chlorella sp. HQ. J. Microbiol. Biotechnol. 2016;26:1290-1302. https://doi.org/10.4014/jmb.1512.12074
64. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406-3415. https://doi.org/10.1093/nar/gkg595.