Оригинальный русский текст: https://vavilovj-icg.ru/2024-year/28-7/
МОЛЕКУЛЯРНАЯ И КЛЕТОЧНАЯ БИОЛОГИЯ
Лобно-височная деменция с паркинсонизмом-17 - нейродегенеративное заболевание, характеризующееся патологической агрегацией белка тау с образованием нейрофибриллярных клубков и дальнейшей гибелью нейронов. Наследственная форма лобно-височной деменции может быть вызвана мутациями в различных генах, одним из которых является ген MAPT на хромосоме 17, кодирующий тау-белок. Поскольку на данный момент отсутствуют утвержденные медицинским сообществом способы борьбы с лобно-височной деменцией, исследование на клеточных моделях in vitro молекулярно-генетических механизмов, приводящих к развитию заболевания, поиск мишеней для терапевтического воздействия и возможность тестирования потенциальных лекарственных препаратов для предотвращения гибели нейронов являются актуальной задачей. Анализ данных секвенирования экзома 46-летней пациентки с клиническим диагнозом болезнь Паркинсона показал наличие патологического варианта c.2013T>G (rs63750756) в гене MAPT, который ассоциирован с лобно-височной деменцией с паркинсонизмом-17. При помощи репрограммирования мононуклеарных клеток периферической крови пациентки нами были получены десять линий индуцированных плюрипотентных стволовых клеток (ИПСК), из которых детально охарактеризованы две. Репрограммирование проводили с помощью трансфекции неинтегрирующимися эписомными векторами, которые экспрессируют белки OCT4, SOX2, KLF4, LIN28, L-MYC и mp53DD. Линии ИПСК ICGi052-A и ICGi052-B стабильно пролиферируют, образуют колонии с характерной для плюрипотентных клеток человека морфологией, имеют нормальный диплоидный кариотип (46,XX), экспрессируют эндогенную щелочную фосфатазу и маркеры плюрипотентности (OCT4, NANOG, SSEA-4 и TRA-1-60) и способны дифференцироваться в производные трех зародышевых листков: энто-, экто- и мезодерму. Благодаря тому, что ИПСК можно направленно дифференцировать в широкий спектр типов клеток, полученные в данной работе и детально охарактеризованные линии ИПСК являются уникальным инструментом для изучения молекулярно-генетических механизмов патогенеза лобно-височной деменции с паркинсонизмом-17, а также тестирования потенциальных лекарственных препаратов in vitro.
Репарация ДНК – важнейший клеточный процесс, который способствует поддержанию целостности генома. В настоящее время эффективная работа систем репарации ДНК рассматривается исследователями как один из ключевых факторов, определяющих максимальную продолжительность жизни. Центральным регулятором процесса репарации ДНК является фермент поли(ADP-рибоза)полимераза 1 (PARP1), способный синтезировать полимер поли(ADP-рибозы) (PAR) в ответ на повреждение ДНК и присоединять его к белкаммишеням, в число которых входит и сам PARP1, осуществляя тем самым посттрансляционную модификацию этих белков и регулируя их сродство к ДНК. PARP1 принимает участие и во многих других процессах, ассоциированных с клеточным старением, таких как поддержание целостности теломер и развитие воспалительной реакции. Свойства PARP1 как изолированного белка практически не исследовались у млекопитающих, которые демонстрируют высокую максимальную продолжительность жизни, за исключением человека. Одним из перспективных объектов таких исследований считается голый землекоп (Heterocephalus glaber), имеющий экстремально высокую максимальную продолжительность жизни, а также более эффективно функционирующие системы репарации ДНК, которые обеспечивают высокую устойчивость его клеток к воздействию ряда генотоксических агентов, по сравнению с другими мелкими грызунами, например, близкой по размеру и массе тела мышью (Mus musculus). В настоящей работе проведено сравнение аминокислотной последовательности PARP1 голого землекопа с аминокислотными последовательностями белков-ортологов других млекопитающих. В отличие от PARP1 человека, в аминокислотной последовательности PARP1 голого землекопа выявлено 13 эволюционно консервативных аминокислотных замен в различных функциональных доменах белка. С использованием поиска в базах данных последовательности кДНК гена Parp1 голого землекопа и последующего анализа путем выравнивания транскриптомных данных выбрана соответствующая экспрессируемому варианту Parp1 последовательность кДНК, которая была клонирована с помощью экспрессионного вектора на основе плазмиды pLate31. В результате экспрессии в штамме Escherichia coli BL21(DE3)GeneX и очистки, проведенной с использованием трех хроматографических стадий, впервые был получен и охарактеризован функционально активный фермент PARP1 голого землекопа.
Предлагается вниманию цикл статей, доказывающий существование ранее неизвестного механизма взаимодействия гемопоэтической стволовой клетки и экстраклеточной двуцепочечной ДНК (в частности, двуцепочечной ДНК периферического кровяного русла), который объясняет возможность появления и закрепления в гемопоэтических стволовых клетках генетической информации, содержащейся в двуцепочечной ДНК внеклеточного происхождения. Сформулирована концепция возможности стохастического или целенаправленного изменения генома гемопоэтических стволовых клеток, основанная на открытии новых, ранее неизвестных биологических свойств низкодифференцированных гемопоэтических предшественников. Основные положения концепции заключаются в следующих тезисах. Гемопоэтическая стволовая клетка захватывает и интернализует фрагменты экстраклеточной двуцепочечной ДНК естественным природным механизмом. В акте интернализации принимают участие специфические группы факторов гликокаликса, к которым относятся гликопротеины/ протеогликаны, гликозилфосфатидилинозитол-заякоренные белки и скавенджер-рецепторы. Сайтами связывания фрагментов ДНК являются гепарин-связывающие домены и кластеры положительно заряженных аминокислотных остатков, входящих в состав белковых молекул указанных факторов. Доставленные во внутренние компартменты гемопоэтических стволовых клеток экстраклеточные фрагменты инициируют терминальную дифференцировку, колониеобразование и пролиферацию предшественников гемопоэза. Молекулярным событием, отражающим эти процессы, является возникновение и репарация пангеномных одноцепочечных разрывов. Процесс возникновения пангеномных одноцепочечных разрывов и восстановление целостности генома (геномной ДНК) сопряжен с активацией в клетке «рекомбиногенной ситуации», во время активной фазы которой возможны стохастическая гомологичная рекомбинация или иные рекомбинационные события между экстраклеточными фрагментами, локализованными в ядре, и ДНК хромосом. Генетический материал исходно экстраклеточной локализации или интегрирует в реципиентный геном с замещением гомологичных хромосомных сегментов, или транзитно присутствует в ядре и может проявляться как новый генетический признак. Предполагается, что в результате стохастических актов гомологичного обмена происходит коррекция локусов хромосом в гемопоэтических стволовых клетках, получивших в ходе существования организма мутации, которые являются причиной клонального гемопоэза, ассоциированного со старостью. В этой связи возникает принципиальная возможность изменения статуса гемопоэза гемопоэтических стволовых клеток в направлении поликлональности и исходного многообразия клонов. Такие события могут составить основу омоложения кровеобразующей системы клеток. Результаты работ свидетельствуют, что другие стволовые клетки организма также захватывают фрагменты экстраклеточной ДНК. Этот факт создает парадигму общего омоложения организма.
ГЕНОМИКА И ТРАНСКРИПТОМИКА
В ходе исследования разнообразия водорослей пирокластических отложений вулканов Шивелуч и Горелый (полуостров Камчатка) были выделены Chlorella-подобные штаммы зеленых водорослей VCA-72 и VCA-93 из проб, отобранных вдоль русла р. Байдарная на вулкане Шивелуч и на выходе термальных паров по краю кальдеры на южном склоне вулкана Горелый в 2018 и 2020 гг. соответственно. Идентификация штаммов выполнялась в рамках комплексного подхода микроскопическими и молекулярно-генетическими методами, включающими предварительную идентификацию, получение нуклеотидных последовательностей малой субъединицы и внутреннего транскрибируемого спейсера рРНК, построение филогенетических деревьев и вторичных структур участков ITS1 и ITS2 рРНК. На филогенетическом древе штамм VCA-93 кластеризовался в видовой кладе Micractinium thermotolerans. При сравнении моделей спиральных доменов ITS1 и ITS2 у M. thermotolerans различий не выявлено. Штамм VCA-72 занимал базальное положение в кладе M. inermum. Модели вторичной структуры спиралей штамма VCA-72 в целом были сходны с моделями для M. inermum, однако отмечена внутривидовая вариабельность, обусловленная в основном заменами в верхушечных и боковых петлях. В спиральных участках исследуемых штаммов M. inermum обнаружено пять замен hCBC, тогда как замен CBC обнаружено не было. Детальный анализ морфологии и жизненного цикла позволил выявить в стареющих культурах клетки, которые по размеру значительно превышают вегетативные и имеют грушевидную, овальную и эллипсоидную формы с неглубоким широким сужением в центре. Также в стареющих культурах обоих видов были выявлены клетки с бесцветными липидными каплями. Способность синтезировать и накапливать липиды говорит о большом потенциале штаммов для производства биодизельного топлива. Обзор местообитаний предыдущих и новых находок позволяет сделать вывод об экологической пластичности исследуемых видов. Полученные результаты дополняют сведения о биогеографии видов: M. inermum обнаружен впервые на территории России, а M. thermotolerans – на полуострове Камчатка.
Синтетические межродовые гибриды (амфидиплоиды) и геномно-замещенные формы пшеницы – важный источник для переноса хозяйственно ценных генов от диких видов в геном Triticum aestivum L. Их используют как для решения теоретических задач, так и в практических целях для получения дополненных или замещенных линий, а также для индукции пшенично-чужеродных транслокаций с помощью облучения или негомологичной конъюгации хромосом. Хромосомный и геномный состав аллополиплоидных форм обычно верифицируется в ранних гибридных поколениях, часто дальнейшая судьба этих гибридов остается неизученной. В настоящей работе с помощью методов С-дифференциального окрашивания хромосом по Гимза и флуоресцентной гибридизации in situ (FISH) с ДНК-зондами pAs1 и pSc119.2 мы провели исследование кариотипов пяти гекса- (2n = 6x = 42) и октаплоидных (2n = 8x = 56) геномно-дополненных амфидиплоидов пшеницы с отдельными видами из родов Aegilops, Haynaldia и Hordeum, а также шести гексаплоидных пшенично-эгилопсных геномно-замещенных форм, полученных более 40 лет назад и поддерживаемых в коллекциях разных научноисследовательских учреждений. Показано, что большинство исследованных форм цитогенетически стабильны, однако Авродес (геном BBAASS) – гексаплоидный геномно-замещенный гибрид пшеницы и Ae. speltoides, расщеплялся по хромосомному составу после многих репродукций. Хромосомный анализ не подтвердил ожидаемого геномного состава геномно-замещенной форма Авротата, у которой вместо заявленного N-генома от Ae. uniaristata Vis. обнаружен D-геном. В данной работе показано, что октаплоидные формы проходят через более сложные преобразования геномов, чем гексаплоидные: в двух исследованных предположительно октаплоидных амфидиплоидах АD 7, АD 7147 произошла редукция числа хромосом до гексаплоидного уровня. У обеих форм были утрачены семь пар хромосом из разных родительских субгеномов, представляющих все семь гомеологических групп. В результате у них сформировался смешанный (гибридный) геном, состоящий из уникальной комбинации хромосом нескольких родительских субгеномов.
Амарант - древняя культура семейства Амарантовые (Amaranthaceae). Для России это достаточно новая сельскохозяйственная культура. В семенах и листовой биомассе содержатся высококачественный безглютеновый белок, жирные кислоты, полиненасыщенный углеводород сквален, флавоноиды, витамины и минералы. Комплексное изучение амаранта, развитие его селекции и создание новых сортов являются крайне важным направлением для решения проблемы повышения качества пищевой продукции путем использования растительного сырья, обогащенного полезными и высокопитательными компонентами. На сегодняшний день основными методами селекционной работы с амарантом остаются отбор и гибридизация. Методы мутационной селекции и полиплоидии были успешно использованы для увеличения урожайности семян и содержания белка. С помощью генов, кодирующих белки амаранта, созданы трансгенные растения картофеля, мягкой пшеницы и кукурузы. Несмотря на большой потенциал амаранта, изучению его геномики посвящено не много исследова- ний, направленных главным образом на идентификацию видового разнообразия. В направления селекционной работы с амарантом входят такие признаки, как «крупность и неосыпаемость семян», «низкорослость», «скороспелость», «высокая урожайность», «холодостойкость», «синхронность созревания», «устойчивость к вредителям и болезням», «высокая питательная ценность»: содержание и качество белка, липидов, сквалена, биологически активных соединений. Уникальная коллекция амаранта Всероссийского института генетических ресурсов растений им. Н.И. Вавилова (ВИР) включает 570 образцов из различных стран мира. На протяжении 70 лет она пополнялась местными, селекционными сортами и дикими видами за счет экспедиций, поступлений из научноисследовательских институтов, ботанических садов, генбанков и опытных селекционных станций всего мира. В результате многолетнего изучения были сформированы признаковые группы образцов с высокой урожайностью семян и листовой биомассы, скороспелые и холодостойкие, с повышенным содержанием белка в семенах и биомассе, низкорослые, устойчивые к осыпанию семян, овощного и декоративного направления использования. Сохраняемый в ВИР генофонд амаранта способен предоставлять неограниченные возможности для селекции и восполнять нужды населения страны, обогащая питательный рацион продуктами из этой здоровой и полезной культуры.
ГЕНЕТИКА ЖИВОТНЫХ
Болезнь Паркинсона (БП) – возрастная нейродегенеративная патология центральной нервной системы. Наиболее характерными нарушениями при БП считаются аномалии в нигростриарной системе, включающей в себя черную субстанцию среднего мозга и полосатое тело. При БП аномалии дофаминергической системы мозга сопровождаются альфа-синуклеинопатией. Для изучения механизмов возникновения данной патологии созданы генетические модели на мышах. Трансгенные мыши линии B6.Cg-Tg(PrNp-SNCA*A53T)23Mkle/J (далее по тексту B6.Cg-Tg) имеют мутацию A53T в гене SNCA альфа-синуклеина человека. В нашей предыдущей работе оценена плотность нейронов в префронтальной коре, гиппокампе, черной субстанции и полосатом теле у мышей этой линии, однако дофаминергическая система мозга, которая играет ключевую роль в развитии БП, изучена не была. Целью настоящего исследования стало изучение координации движений и баланса тела, а также плотности дофаминовых нейронов и накопления альфа-синуклеина в черной субстанции самцов мышей линии B6.Cg-Tg в возрасте шести месяцев. В качестве контроля использованы сибсы, у которых не было экспрессии гена SNCA с мутацией A53T и экспрессировался мышиный альфа-синуклеин (далее по тексту – дикий тип; wild type, WT), того же пола и возраста, из тех же самых выводков, что и исследуемые мыши B6.Cg-Tg. Координация движений и баланс тела были изучены с помощью теста «рота-род»; плотность дофаминовых нейронов и накопление альфа-синуклеина в черной субстанции оценены иммуногистохимическим методом. Полученные результаты показывают, что мыши B6.Cg-Tg не имеют отличий по координации движений и баланса тела от контроля – сибсов дикого типа. Однако у мышей B6.Cg-Tg в черной субстанции были обнаружены накопление альфа-синуклеина и уменьшение числа дофаминовых нейронов. Таким образом, мыши линии B6.Cg-Tg в возрасте шести месяцев имеют симптомы начала развития БП, такие как накопление мутантного альфа-синуклеина и уменьшение числа дофаминовых нейронов в черной субстанции. Полученные в этом исследовании результаты позволяют характеризовать линию B6.Cg-Tg в качестве адекватной модели для изучения ранней стадии БП человека уже в возрасте шести месяцев.
Красная лисица, Vulpes vulpes, - широко распространенный вид, характеризующийся высокой адаптивностью к различным средам обитания и широким спектром пищевых ресурсов. Удивительная адаптивность позволила красной лисице выживать в самых разнообразных условиях, от городских территорий до отдаленных диких мест. С использованием набора микросателлитных маркеров нами проведен сравнительный генетический анализ популяций красной лисицы из двух стран. В исследование включены популяции из Восточных Альп и северных Динарских гор в Словении, а также из центральных Динарских гор в Боснии и Герцеговине. Мы успешно выделили ДНК и генотипировали 118 образцов красной лисицы. Анализы, включавшие байесовские методы кластеризации, показали слабую генетическую дифференциацию между исследуемыми популяциями. Однако надо отметить, что статистически значимые различия в оценках генетической дифференциации были очевидны лишь при сравнении популяций между двумя странами. Дополнительные пространственные генетические анализы выявили разделение на четыре генетических кластера, которые включали две отдельные группы в Боснии и Герцеговине и две - в Словении. Такая картина дифференциации предполагает, что ключевым фактором, влияющим на генетическую структуру красной лисицы в данном регионе, является изоляция по расстоянию. Кроме того, наши результаты показали, что популяции из Альп и северных Динарских гор обладают более высокими генетическим разнообразием и наблюдаемой гетерозиготностью по сравнению с популяциями из центральных Динарских гор. Генетическое разнообразие заметно также при сравнении с другими европейскими популяциями красной лисицы. Изучение генетического разнообразия имеет важное значение для устойчивости и адаптируемости популяций, обеспечивая их выживание в условиях экологических изменений и антропогенного давления.
Курообразные (Galliformes) и гусеобразные (Anseriformes) – две ветви группы Galloanserae, базальные по отношению к остальным Neognathae. В сравнении с Galliformes, эволюция кариотипов Anseriformes
недостаточно изучена. Настоящее исследование посвящено представителям гусеобразных и изменению их
хромосомных наборов в ходе эволюции. Была получена подробная информация о кариотипах (G-, C-бэндинг,
флуоресцентная гибридизация in situ) трех видов уток: шилохвости (Anas acuta, 2n = 80), кряквы (Anas platyrhynchos, 2n = 80) и обыкновенного гоголя (Bucephala clangula, 2n = 80). С использованием зондов, разработанных на основе сортированных хромосом авдотки (Burhinus oedicnemus, 2n = 42, Charadriiformes), были выявлены
районы гомологии на макрохромосомах и части микрохромосом уток. Изученные виды рода Anas имеют одинаковое число макрохромосом, при этом у B. clangula число крупных хромосом увеличено за счет двух разрывов
предковых элементов. В отличие от представителей Anas, у этого вида обнаружены массивные гетерохроматиновые блоки в большинстве крупных макроаутосом и в половых хромосомах. Данные хромосомного пэйнтинга
дополнены информацией о локализации рибосомной ДНК и амплификации теломерных повторов. Сравнительный анализ геномов с помощью приложения D-GENIES подтвердил высокий уровень консерватизма синтенных
групп у Anatidae. Полученные результаты расширили представление о преобразованиях макро- и половых хромосом Anseriformes в ходе эволюции.
БИОТЕХНОЛОГИЯ В ПОСТГЕНОМНУЮ ЭРУ
На сегодняшний день имеются ограниченные знания об основных характеристиках генов человека, их структуре, функции и механизмах регуляции экспрессии. Биологическая роль около 20 % белковых продуктов генов до сих пор не установлена, а молекулярные функции известной части протеома остаются недостаточно изученными. Данное обстоятельство ограничивает прогресс как фундаментальных, так и прикладных биологических и медицинских наук, в особенности в случае терапии наследственных болезней, патогенез которых обусловлен наличием вариантов в нуклеотидной последовательности отдельных генов. В связи с этим возрастает необходимость проведения исследований, направленных на изучение функций генов, а также молекулярных патогенетических путей, связанных с развитием моногенных заболеваний. Наша статья посвящена гену TCF4, кодирующему широко экспрессируемый фактор транскрипции, важный для развития и функционирования нервной системы. К настоящему времени установлено, что патогенные варианты в этом гене приводят к развитию редкого генетического заболевания, известного как синдром Питта–Хопкинса, а полиморфные варианты в TCF4 ассоциированы с рядом социально значимых заболеваний, представленных различными психическими расстройствами. Молекулярные механизмы патогенеза подобных состояний по-прежнему остаются неизученными, а знания о вышестоящей регуляции TCF4 и его нижестоящих генах-мишенях ограничены. Сложность структурной организации и особенности регуляции экспрессии гена обеспечивают многообразие изоформ TCF4, что затрудняет понимание молекулярных функций белка. В обзоре рассмотрены известные данные о структуре и функциях фактора транскрипции TCF4. Обсуждаются потенциальные гены-мишени и возможные патогенетические механизмы, обусловленные потерей функции этого белка, выявленные в исследованиях на животных и клеточных моделях синдрома Питта–Хопкинса. Рассмотрены преимущества и ограничения потенциальных стратегий терапии указанного синдрома, основанные на компенсации дозы TCF4 или воздействии на молекулярные мишени изучаемого транскрипционного фактора.
Y-хромосома содержит набор генов, имеющих тестис-специфическую экспрессию, ответственных за развитие яичек и сперматогенез, и является наиболее важной мишенью в поиске генетических причин мужского бесплодия. Большинство из этих генов расположены в локусе «фактора азооспермии» AZF (регионы AZFa, AZFb и AZFc) на длинном плече Y-хромосомы. Микроделеции Y-хромосомы, приводящие к удалению всего локуса AZF, а также одного или нескольких регионов (полные делеции), являются одной из ведущих причин нарушения сперматогенеза и бесплодия, однако роль частичных AZFc-делеций (gr/gr, b2/b3, b1/b3) в нарушении сперматогенеза не ясна, а влияние на сперматогенез варьирует между популяциями. Цель настоящего исследования состояла в оценке частоты различных типов AZFс-микроделеций и поиске ассоциаций с параметрами сперматогенеза у мужчин славянской этнической группы из общей российской популяции (n = 700, средний возраст 25.8 года). Для выявления AZF-микроделеций анализировали наличие/отсутствие 15 STS-маркеров методом мультиплексной полимеразной цепной реакции в режиме реального времени. У всех участников записывали возраст, вес, рост, оценивали объем, концентрацию, общее количество, долю подвижных и морфологически нормальных сперматозоидов в эякуляте. В исследуемой выборке выявлены 19.9 % (139/700) мужчин с микроделециями AZFс региона, из них 16.7 % (117/700) являлись носителями частичной делеции b2/b3, 3.0 % (21/700) – частичной делеции gr/gr, 0.14 % (1/700) – полной делеции b2/b4. Не обнаружены AZFa и AZFb микроделеции и другие типы AZF-делеций. Суммарная частота всех типов AZFс-делеций, а также каждого типа частичных микроделеций b2/b3 и gr/gr не различалась в группах азооспермии, тяжелой олигозооспермии (≤5.0 млн/мл), олигозооспермии (5.0 < КС < 16.0 млн/мл) и нормальной концентрации сперматозоидов (≥16.0 млн/мл). Сравнение спермиологических показателей в группах с различными типами частичных AZFc-делеций и контролем (без делеций) тоже не выявило достоверных различий. Таким образом, частичные AZFc-микроделеции b2/b3 и gr/gr не оказывают существенного влияния на сперматогенез у славянских мужчин. Предполагается, что у славян частичные AZFсмикроделеции b2/b3 и gr/gr фиксированы в Y-гаплогруппе N3 и R1a соответственно, а их негативное влияние на сперматогенез уравновешивается другими генетическими факторами. Установленная в нашей работе более высокая частота частичных AZFc-делеций (19.7 %) у славян по сравнению с европейскими популяциями (7.3 %) также может объясняться широким распространением этих Y-гаплогрупп в славянской популяции России.>< 16.0 млн/мл) и нормальной концентрации сперматозоидов (≥16.0 млн/мл). Сравнение спермиологических показателей в группах с различными типами частичных AZFc-делеций и контролем (без делеций) тоже не выявило достоверных различий. Таким образом, частичные AZFc-микроделеции b2/b3 и gr/gr не оказывают существенного влияния на сперматогенез у славянских мужчин. Предполагается, что у славян частичные AZFсмикроделеции b2/b3 и gr/gr фиксированы в Y-гаплогруппе N3 и R1a соответственно, а их негативное влияние на сперматогенез уравновешивается другими генетическими факторами. Установленная в нашей работе более высокая частота частичных AZFc-делеций (19.7 %) у славян по сравнению с европейскими популяциями (7.3 %) также может объясняться широким распространением этих Y-гаплогрупп в славянской популяции России.
Инфаркт миокарда (ИМ) - многофакторное полигенное заболевание, развивающееся в результате сложного взаимодействия многочисленных генетических факторов и внешней среды. Соответственно, вклад каждого из них по отдельности, как правило, невелик и может существенно зависеть от состояния других сопут ствующих факторов. Цель исследования - поиск информативных предикторов развития ИМ на основе полигенного анализа полиморфных вариантов генов ферментов антиоксидантной защиты - PON1 (rs662), PON2 (rs7493), CAT (rs1001179), MSRA (rs10098474), GSTP1 (rs1695); апоптоза - CASP8 (rs3834129), TP53 (rs1042522), BCL2 (rs12454712); воспаления CRP (rs1205), CX3CR1 (rs3732378), IL6 (rs1800795), CCL2 (rs1024611). В работе использованы образцы: 591 - ДНК (280 больных, перенесших ИМ в возрасте от 30 до 60 лет, средний возраст 46.02 ± 6.17; 311 - контроль, возраст от 30 до 62 лет, средний возраст 44.65 ± 7.07). Все участники исследования -мужчины, татары по этнической принадлежности. С помощью логистического регрессионного анализа с учетом различных моделей выявлены ассоциации с ИМ полиморфных вариантов генов CX3CR1 (rs3732378) (сверхдоминантная модель – G/G+A/A vs A/G Р = 0.0002, OR = 1.9), MSRA (rs10098474) (доминантная модель - T/T vs T/C+C/C Р = 0.015, OR = 1.51), CCL2 (rs1024611) (рецессивная модель - P = 0.0007 - A/A+A/G vs G/G OR = 2.63), BCL2 (rs12454712) (лог-аддитивная модель - аллель *C, P = 0.005, OR = 1.38). C применением метода Монте-Карло и цепей Маркова (APSampler) получены сочетания аллелей/генотипов изученных полиморфных локусов, ассоциированных с высоким риском ИМ, в составе которых, помимо обнаруженных в ходе анализа ассоциаций ИМ и отдельных полиморфных вариантов, присутствуют полиморфные варианты генов CASP8, TP53, CAT, PON2, CRP, IL6, GSTP1. Среди этих сочетаний проведен попарный анализ возможного нелинейного взаимодействия между выявленными комбинациями аллелей/генотипов, который показал синергетические взаимодействия полиморфных вариантов CX3CR1*A/G и CASP8*I/I, MSRA*C и CRP*C, CAT*С/T и MSRA*C, CAT*C/T и CX3CR1*A, способствующие развитию ИМ. На основе полученных результатов с использованием многофакторного логистического регрессионного анализа построена предиктивная модель для оценки риска развития ИМ, предсказательная способность которой достигла значения AUC = 0.71 (AUC (area under curve) - площадь под кривой при ROC-анализе).