Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Комплексный цитогенетический анализ кариотипов трех видов уток (шилохвость, кряква и обыкновенный гоголь) и эволюция кариотипов у представителей семейства Anatidae (Anseriformes, Aves)

https://doi.org/10.18699/vjgb-24-84

Аннотация

Курообразные (Galliformes) и гусеобразные (Anseriformes) – две ветви группы Galloanserae, базальные по отношению к остальным Neognathae. В сравнении с Galliformes, эволюция кариотипов Anseriformes
недостаточно изучена. Настоящее исследование посвящено представителям гусеобразных и изменению их
хромосомных наборов в ходе эволюции. Была получена подробная информация о кариотипах (G-, C-бэндинг,
флуоресцентная гибридизация in situ) трех видов уток: шилохвости (Anas acuta, 2n = 80), кряквы (Anas platyrhynchos, 2n = 80) и обыкновенного гоголя (Bucephala clangula, 2n = 80). С использованием зондов, разработанных на основе сортированных хромосом авдотки (Burhinus oedicnemus, 2n = 42, Charadriiformes), были выявлены
районы гомологии на макрохромосомах и части микрохромосом уток. Изученные виды рода Anas имеют одинаковое число макрохромосом, при этом у B. clangula число крупных хромосом увеличено за счет двух разрывов
предковых элементов. В отличие от представителей Anas, у этого вида обнаружены массивные гетерохроматиновые блоки в большинстве крупных макроаутосом и в половых хромосомах. Данные хромосомного пэйнтинга
дополнены информацией о локализации рибосомной ДНК и амплификации теломерных повторов. Сравнительный анализ геномов с помощью приложения D-GENIES подтвердил высокий уровень консерватизма синтенных
групп у Anatidae. Полученные результаты расширили представление о преобразованиях макро- и половых хромосом Anseriformes в ходе эволюции.

Об авторах

В. Р. Беклемишева
Институт молекулярной и клеточной биологии Сибирского отделения Российской академии наук
Россия

Новосибирск



К. В. Тишакова
Институт молекулярной и клеточной биологии Сибирского отделения Российской академии наук
Россия

Новосибирск



С. А. Романенко
Институт молекулярной и клеточной биологии Сибирского отделения Российской академии наук
Россия

Новосибирск



Д. А. Андреюшкова
Институт молекулярной и клеточной биологии Сибирского отделения Российской академии наук
Россия

Новосибирск



В. А. Юдкин
Институт систематики и экологии животных Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



Е. А. Интересова
Институт систематики и экологии животных Сибирского отделения Российской академии наук; Томский государственный университет
Россия

Новосибирск

Томск



Ф. Янг
Школа медицины и наук о жизни, Шандонский технологический университет
Китай

Цзыбо



М. А. Фергюсон-Смит
Кембриджский ресурсный центр сравнительной геномики, Кембриджский университет
Великобритания

Кембридж



А. С. Графодатский
Институт молекулярной и клеточной биологии Сибирского отделения Российской академии наук
Россия

Новосибирск



А. А. Проскурякова
Институт молекулярной и клеточной биологии Сибирского отделения Российской академии наук
Россия

Новосибирск



Список литературы

1. Abu-Almaaty A.H., Hassan M.K., El Bakary N.E.R., Ahmed S.H. Chromosomal evolution and molecular genetic analysis of four species of genus Anas (Aves: Anatidae). Genetika. 2019;51(1):104-119. DOI 10.2298/GENSR1901103A

2. Beçak M.L., Beçak W., Roberts F.L., Shoffner R.N., Volp E.P. Aves. In: Chromosome Atlas: Fish, Amphibians, Reptiles, and Birds. Berlin: Springer, 1973;129-207

3. Bulatova N.S., Panov E.N., Radzhabli S.I. Description of the karyotypes of several bird species of the USSR fauna. Dokl. Akad. Nauk SSSR. 1971;199(6):1420-1423

4. Burt D.W. Origin and evolution of avian microchromosomes. Cytogenet. Genome Res. 2002;96(1-4):97-112

5. Cabanettes F., Klopp C. D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. PeerJ. 2018;6:e4958. DOI 10.7717/PEERJ.4958/TABLE-2

6. Campagna L., Toews D.P.L. The genomics of adaptation in birds. Curr. Biol. 2022;32(20):R1173-R1186. DOI 10.1016/j.cub.2022.07.076

7. Chowdhary B., Raudsepp T. Cytogenetics and physical gene maps. In: Bowling A.T., Ruvinsky A. (Eds.). The Genetics of the Horse. Oxon, UK: CABI Publishing, CAB International, 2000;171-241

8. Christidis L. Chordata 3: Aves. In: John B., Kayano H., Levan A. (Eds.). Animal Cytogenetics. Vol. 4. Berlin: Gebrueder Borntraeger, 1990

9. Coullin P., Bed’Hom B., Candelier J.J., Vettese D., Maucolin S., Moulin S., Galkina S.A., Bernheim A., Volobouev V. Cytogenetic repartition of chicken CR1 sequences evidenced by PRINS in Galliformes and some other birds. Chromosom. Res. 2005;13(7):665-673. DOI 10.1007/s10577-005-1004-7

10. Damas J., O’Connor R., Farré M., Lenis V.P.E., Martell H.J., Mandawala A., Fowler K., Joseph S., Swain M.T., Griffin D.K., Larkin D.M. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res. 2017;27(5):875-884. DOI 10.1101/gr.213660.116

11. Damas J., Kim J., Farré M., Griffin D.K., Larkin D.M. Reconstruction of avian ancestral karyotypes reveals differences in the evolutionary history of macro- and microchromosomes. Genome Biol. 2018; 19(1):155. DOI 10.1186/s13059-018-1544-8

12. Damas J., O’Connor R.E., Griffin D.K., Larkin D.M. Avian chromosomal evolution. In: Kraus R.H.S. (Ed.). Avian Genomics in Ecology and Evolution: From the Lab into the Wild. Springer, 2019;69-92

13. de Oliveira A.M., Souza G.M., Toma G.A., Dos Santos N., Dos Santos R.Z., Goes C.A.G., Deon G.A., Setti P.G., Porto-Foresti F., Utsunomia R., Gunski R.J., Del Valle Garnero A., Herculano Correa de Oliveira E., Kretschmer R., Cioffi M.B. Satellite DNAs, heterochromatin, and sex chromosomes of the wattled jacana (Charadriiformes; Jacanidae): a species with highly rearranged karyotype. Genome. 2024;67(4):109-118. DOI 10.1139/gen-2023-0082

14. De Oliveira T.D., Kretschmer R., Bertocchi N.A., Degrandi T.M., De Oliveira E.H.C., De Cioffi M.B., Garnero A.D.V., Gunski R.J. Genomic organization of repetitive DNA in woodpeckers (aves, piciformes): Implications for karyotype and ZW sex chromosome differentiation. PLoS One. 2017;12(1):e0169987. DOI 10.1371/journal.pone.0169987

15. Degrandi T.M., Barcellos S.A., Costa A.L., Garnero A.D.V., Hass I., Gunski R.J. Introducing the bird chromosome database: An overview of cytogenetic studies in birds. Cytogenet. Genome Res. 2020; 160(4):199-205. DOI 10.1159/000507768

16. Delany M.E., Krupkin A.B., Miller M.M. Organization of telomere sequences in birds: evidence for arrays of extreme length and for in vivo shortening. Cytogenet. Cell Genet. 2000;90(1-2):139-145. DOI 10.1159/000015649

17. Delany M.E., Gessaro T.M., Rodrigue K.L., Daniels L.M. Chromosomal mapping of chicken mega-telomere arrays to GGA9, 16, 28 and W using a cytogenomic approach. Cytogenet. Genome Res. 2007;117(1-4):54-63. DOI 10.1159/000103165

18. Delany M.E., Robinson C.M., Goto R.M., Miller M.M. Architecture and organization of chicken microchromosome 16: Order of the NOR, MHC-Y, and MHC-B subregions. J. Hered. 2009;100(5): 507-514. DOI 10.1093/jhered/esp044

19. Derjusheva S., Kurganova A., Habermann F., Gaginskaya E. High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds. Chromosom. Res. 2004; 12(7):715-723. DOI 10.1023/B:CHRO.0000045779.50641.00

20. Dos Santos M.S., Kretschmer R., Silva F.A.O., Ledesma M.A., O’Brien P.C.M., Ferguson-Smith M.A., Del Valle Garnero A., de Oliveira E.H.C., Gunski R.J. Intrachromosomal rearrangements in two representatives of the genus Saltator (Thraupidae, Passeriformes) and the occurrence of heteromorphic Z chromosomes. Genetica. 2015;143(5):535-543. DOI 10.1007/s10709-015-9851-4

21. Dos Santos M. da S., Kretschmer R., Frankl-Vilches C., Bakker A., Gahr M., O’Brien P.C.M., Ferguson-Smith M.A., De Oliveira E.H.C. Comparative cytogenetics between two important songbird, models: The zebra finch and the canary. PLoS One. 2017;12(1):e0170997. DOI 10.1371/journal.pone.0170997

22. Ebied A.M., Hassan H.A., Abu Almaaty A.H., Yaseen A.E. Karyotypic characterization of ten species of birds. Cytologia (Tokyo). 2005; 70(2):181-194. DOI 10.1508/cytologia.70.181

23. Ellegren H. The evolutionary genomics of birds. Annu. Rev. Ecol. Evol. Syst. 2013;44:239-259. DOI 10.1146/annurev-ecolsys-110411-160327

24. Fillon V., Vignoles M., Crooijmans R.P.M.A., Groenen M.A.M., Zoorob R., Vignal A. FISH mapping of 57 BAC clones reveals strong conservation of synteny between Galliformes and Anseriformes. Anim. Genet. 2007;38(3):303-307. DOI 10.1111/j.1365-2052.2007. 01578.x

25. Gill F., Donsker D., Rasmussen P. (Eds.). IOC World Bird List (v13.2). 2023. DOI 10.14344/IOC.ML.13.2

26. raphodatsky A.S., Yang F., O’Brien P.C.M., Serdukova N., Milne B.S., Trifonov V., Ferguson-Smith M.A. A comparative chromosome map of the Arctic fox, red fox and dog defined by chromosome painting and high resolution G-banding. Chromosomе Res. 2000;8(3):253- 263. DOI 10.1023/A:1009217400140

27. Graphodatsky A.S., Yang F., O’Brien P.C.M., Perelman P., Milne B.S., Serdukova N., Kawada S.I., Ferguson-Smith M.A. Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet. Cell Genet. 2001;92(3-4):243-247. DOI 10.1159/000056911

28. Gregory T.R. The Animal Genome Size Database, 2023

29. Griffin D.K., Haberman F., Masabanda J., O’Brien P., Bagga M., Sazanov A., Smith J., Burt D.W., Ferguson-Smith M., Wienberg J. Micro- and macrochromosome paints generated by flow cytometry and microdissection: Tools for mapping the chicken genome. Cytogenet. Cell Genet. 1999;87(3-4):278-281. DOI 10.1159/000015449

30. Griffin D.K., Robertson L.B.W., Tempest H.G., Skinner B.M. The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet. Genome Res. 2007;117(1-4):64-77. DOI 10.1159/000103166

31. Griffin D.K., Robertson L.B., Tempest H.G., Vignal A., Fillon V., Crooijmans R.P.M.A., Groenen M.A.M., Deryusheva S., Gaginskaya E., Carré W., Waddington D., Talbot R., Völker M., Masabanda J.S., Burt D.W. Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution. BMC Genomics. 2008;9:168. DOI 10.1186/1471-2164-9-168

32. Grützner F., Zend-Ajusch E., Stout K., Munsche S., Niveleau A., Nanda I., Schmid M., Haaf T. Chicken microchromosomes are hypermethylated and can be identified by specific painting probes. Cytogenet. Cell Genet. 2001;93(3-4):265-269. DOI 10.1159/000056996

33. Guillier-Gencik Z., Bernheim A., Coullin P. Generation of whole-chromosome painting probes specific to each chicken macrochromosome. Cytogenet. Cell Genet. 1999;87(3-4):282-285. DOI 10.1159/000015450

34. Guttenbach M., Nanda I., Feichtinger W., Masabanda J.S., Griffin D.K., Schmid M. Comparative chromosome painting of chicken autosomal paints 1-9 in nine different bird species. Cytogenet. Genome Res. 2003;103(1-2):173-184. DOI 10.1159/000076309

35. Habermann F.A., Cremer M., Walter J., Kreth G., Von Hase J., Bauer K., Wienberg J., Cremer C., Cremer T., Solovei I. Arrangements of macro- and microchromosomes in chicken cells. Chromosom. Res. 2001;9(7):569-584. DOI 10.1023/A:1012447318535

36. Hammar B.O. The karyotypes of thirty‐one birds. Hereditas. 1970; 65(1):29-58

37. Hansmann T., Nanda I., Volobouev V., Yang F., Schartl M., Haaf T., Schmid M. Cross-species chromosome painting corroborates microchromosome fusion during karyotype evolution of birds. Cytogenet. Genome Res. 2009;126(3):281-304. DOI 10.1159/000251965

38. Ijdo J.W., Wells R.A., Baldini A., Reeders S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19(17):4780. DOI 10.1093/nar/19.17.4780

39. Islam F.B., Uno Y., Nunome M., Nishimura O., Tarui H., Agata K., Matsuda Y. Comparison of the chromosome structures between the chickn and three anserid species, the domestic duck (Anas platyrhynchos), muscovy duck (Cairina moschata), and chinese goose (Anser cygnoides), and the delineation of their karyotype evolution by compara. J. Poult. Sci. 2014;51(1):1-13. DOI 10.2141/jpsa.0130090

40. Itoh Y., Arnold A.P. Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosom. Res. 2005;13(1): 47-56. DOI 10.1007/s10577-005-6602-x

41. Kiazim L.G., O’Connor R.E., Larkin D.M., Romanov M.N., Narushin V.G., Brazhnik E.A., Griffin D.K. Comparative mapping of the macrochromosomes of eight avian species provides further insight into their phylogenetic relationships and avian karyotype evolution. Cells. 2021;10(2):362. DOI 10.3390/cells10020362

42. Kretschmer R., de Souza M.S., Furo I.O., Romanov M.N., Gunski R.J., Garnero A.D.V., de Freitas T.R.O., de Oliveira E.H.C., O’Connor R.E., Griffin D.K. Interspecies chromosome mapping in caprimulgiformes, piciformes, suliformes, and trogoniformes (Aves): Cytogenomic insight into microchromosome organization and karyotype evolution in birds. Cells. 2021;10(4):826. DOI 10.3390/cells10040826

43. Liehr T., Kreskowski K., Ziegler M., Piaszinski K., Rittscher K. The Standard FISH Procedure. In: Fluorescence In Situ Hybridisation (FISH). Springer Protocols Handbooks. Berlin: Springer, 2017;109- 118. DOI 10.1007/978-3-662-52959-1_9

44. Maden B.E.H., Dent C.L., Farrell T.E., Garde J., McCallum F.S., Wakeman J.A. Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem. J. 1987;246(2):519-527. DOI 10.1042/bj2460519

45. Masabanda J.S., Burt D.W., O’Brien P.C.M., Vignal A., Fillon V., Walsh P.S., Cox H., Tempest H.G., Smith J., Habermann F., Schmid M., Matsuda Y., Ferguson-Smith M.A., Crooijmans R.P.M.A., Groenen M.A.M., Griffin D.K. Molecular cytogenetic definition of the chicken genome: The first complete avian karyotype. Genetics. 2004;166(3):1367-1373. DOI 10.1534/genetics.166.3.1367

46. Nakatani Y., Takeda H., Kohara Y., Morishita S. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 2007;17(9):1254-1265. DOI 10.1101/gr.6316407

47. Nanda I., Schrama D., Feichtinger W., Haaf T., Schartl M., Schmid M. Distribution of telomeric (TTAGGG)n sequences in avian chromosomes. Chromosoma. 2002;111(4):215-227. DOI 10.1007/s00412-002-0206-4

48. Nanda I., Benisch P., Fetting D., Haaf T., Schmid M. Synteny conservation of chicken macrochromosomes 1–10 in different avian lineages revealed by cross-species chromosome painting. Cytogenet. Genome Res. 2011;132(3):165-181. DOI 10.1159/000322358

49. Nie W., O’Brien P.C.M., Ng B.L., Fu B., Volobouev V., Carter N.P., Ferguson-Smith M.A., Yang F. Avian comparative genomics: Reciprocal chromosome painting between domestic chicken (Gallus gallus) and the stone curlew (Burhinus oedicnemus, Charadriiformes) – An atypical species with low diploid number. Chromosom. Res. 2009;17(1):99-113. DOI 10.1007/s10577-009-9021-6

50. Nie W., O’Brien P.C.M., Fu B., Wang J., Su W., He K., Bed’Hom B., Volobouev V., Ferguson-Smith M.A., Dobigny G., Yang F. Multidi- rectional chromosome painting substantiates the occurrence of extensive genomic reshuffling within Accipitriformes. BMC Evol. Biol. 2015;15(1):205. DOI 10.1186/s12862-015-0484-0

51. Nishida-Umehara C., Tsuda Y., Ishijima J., Ando J., Fujiwara A., Matsuda Y., Griffin D.K. The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosom. Res. 2007;15(6):721-734. DOI 10.1007/s10577-007-1157-7

52. O’Connor R.E., Kretschmer R., Romanov M.N., Griffin D.K. A bird’seye view of chromosomic evolution in the class aves. Cells. 2024; 13(4):310. DOI 10.3390/cells13040310

53. Pala I., Naurin S., Stervander M., Hasselquist D., Bensch S., Hansson B. Evidence of a neo-sex chromosome in birds. Heredity (Edinb.). 2012;108(3):264-272. DOI 10.1038/hdy.2011.70

54. Prum R.O., Berv J.S., Dornburg A., Field D.J., Townsend J.P., Lemmon E.M., Lemmon A.R. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526(7574):569-573. DOI 10.1038/nature15697

55. Rodrigue K.L., May B.P., Famula T.R., Delany M.E. Meiotic instability of chicken ultra-long telomeres and mapping of a 2.8 megabase array to the W-sex chromosome. Chromosom. Res. 2005;13(6):581- 591. DOI 10.1007/s10577-005-0984-7

56. Rodrigues B.S., de Assis M.D.F.L., O’Brien P.C.M., FergusonSmith M.A., De Oliveira E.H.C. Chromosomal studies on Coscoroba coscoroba (Aves: Anseriformes) reinforce the Coscoroba-Cereopsis clade. Biol. J. Linn. Soc. 2014;111(2):274-279. DOI 10.1111/bij.12202

57. Romanenko S.A., Biltueva L.S., Serdyukova N.A., Kulemzina A.I., Beklemisheva V.R., Gladkikh O.L., Lemskaya N.A., Interesova E.A., Korentovich M.A., Vorobieva N.V., Graphodatsky A.S., Trifonov V.A. Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting. Mol. Cytogenet. 2015;8(1):90. DOI 10.1186/s13039-015-0194-8

58. Rutkowska J., Lagisz M., Nakagawa S. The long and the short of avian W chromosomes: No evidence for gradual W shortening. Biol. Lett. 2012;8(4):636-638. DOI 10.1098/rsbl.2012.0083

59. Schartl M., Schmid M., Nanda I. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma. 2016;125(3):553-571. DOI 10.1007/s00412-015-0569-y

60. Schmid M., Nanda I., Hoehn H., Schartl M., Haaf T., Buerstedde J.M., Arakawa H., Caldwell R.B., Weigend S., Burt D.W., Smith J., Griffin D.K., Masabanda J.S., Groenen M.A.M., Crooijmans R.P.M.A., Vignal A., Fillon V., Morisson M., Pitel F., Vignoles M., Garrigues A., Gellin J., Rodionov A.V., Galkina S.A., Lukina N.A., Ben-Ari G., Blum S., Hillel J., Twito T., Lavi U., David L., Feldman M.W., Delany M.E., Conley C.A., Fowler V.M., Hedges S.B., Godbout R., Katyal S., Smith C., Hudson Q., Sinclair A., Mizuno S. Second report on chicken genes and chromosomes 2005. Cytogenet. Genome Res. 2005;109(4):415-479. DOI 10.1159/000084205

61. Seabright M. A rapid banding technique for human chromosomes. Lancet. 1971;298(7731):971-972. DOI 10.1016/s0140-6736(71)90287-x

62. Shetty S., Griffin D.K., Graves J.A.M. Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosom. Res. 1999;7(4):289-295. DOI 10.1023/A:1009278914829

63. Shibusawa M., Minai S., Nishida-Umehara C., Suzuki T., Mano T., Yamada K., Namikawa T., Matsuda Y. A comparative cytogenetic study of chromosome homology between chicken and Japanese quail. Cytogenet. Cell Genet. 2001;95(1-2):103-109. DOI 10.1159/000057026

64. Shibusawa M., Nishida-Umehara C., Masabanda J., Griffin D.K., Isobe T., Matsuda Y. Chromosome rearrangements between chicken and guinea fowl defined by comparative chromosome painting and FISH mapping of DNA clones. Cytogenet. Genome Res. 2002; 98(2-3):225-230. DOI 10.1159/000069813

65. Shibusawa M., Nishibori M., Nishida-Umehara C., Tsudzuki M., Masabanda J., Griffin D.K., Matsuda Y. Karyotypic evolution in the Galliformes: An examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny. Cytogenet. Genome Res. 2004;106(1):111-119. DOI 10.1159/00007857

66. Smith J., Bruley C.K., Paton I.R., Dunn I., Jones C.T., Windsor D., Morrice D.R., Law A.S., Masabanda J., Sazanov A., Waddington D., Fries R., Burt D.W. Differences in gene density on chicken macrochromosomes and microchromosomes. Anim. Genet. 2000;31(2): 96-103. DOI 10.1046/j.1365-2052.2000.00565.x

67. Srikulnath K., Ahmad S.F., Singchat W., Panthum T. Why do some vertebrates have microchromosomes? Cells. 2021;10(9):2182. DOI 10.3390/cells10092182

68. Stiglec R., Ezaz T., Graves J.A.M. A new look at the evolution of avian sex chromosomes. Cytogenet. Genome Res. 2007;117(1-4):103-109. DOI 10.1159/000103170

69. Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75(1):304-306. DOI 10.1016/0014-4827(72)90558-7

70. Sun Z., Pan T., Hu C., Sun L., Ding H., Wang H., Zhang C., Jin H., Chang Q., Kan X., Zhang B. Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses. PLoS One. 2017;12(9):e0184529. DOI 10.1371/journal.pone.0184529

71. Takagi N., Makino S. A revised study on the chromosomes of three species of birds. Caryologia. 1966;19(4):443-455. DOI 10.1080/ 00087114.1966.10796235

72. Telenius H., Pelmear A.H., Tunnacliffe A., Carter N.P., Behmel A., Ferguson-Smith M.A., Nordenrkjold M., Pfragner R., Ponder B.A.J. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosom. Cancer. 1992;4(3):251-263. DOI 10.1002/gcc.2870040311

73. Uno Y., Nishida C., Hata A., Ishishita S., Matsuda Y. Molecular cytogenetic characterization of repetitive sequences comprising centromeric heterochromatin in three Anseriformes species. PLoS One. 2019;14(3):e0214028. DOI 10.1371/journal.pone.0214028

74. Van Tuinen M., Hedges S.B. Calibration of avian molecular clocks. Mol. Biol. Evol. 2001;18(2):206-213. DOI 10.1093/oxfordjournals.molbev.a003794

75. Wang J., Su W., Hu Y., Li S., O’Brien P.C.M., Ferguson-Smith M.A., Yang F., Nie W. Comparative chromosome maps between the stone curlew and three ciconiiform species (the grey heron, little egret and crested ibis). BMC Ecol. Evol. 2022;22(1):23. DOI 10.1186/s12862- 022-01979-x

76. Wójcik E., Smalec E. Description of the mallard duck (Anas platyrhynchos) karyotype. Folia Biol. 2007;55(3-4):115-120

77. Zimmer R., King W.A., Verrinder Gibbins A.M. Generation of chicken Z-chromosome painting probes by microdissection for screening large-insert genomic libraries. Cytogenet. Cell Genet. 1997;78(2): 124-130. DOI 10.1159/000134643

78. Zlotina A., Maslova A., Kosyakova N., Al-Rikabi A.B.H., Liehr T., Krasikova A. Heterochromatic regions in Japanese quail chromosomes: comprehensive molecular-cytogenetic characterization and 3D mapping in interphase nucleus. Chromosom. Res. 2019;27(3):253-270. DOI 10.1007/s10577-018-9597-9.


Рецензия

Просмотров: 312


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)